

| Student details |  |  |  |
|-----------------|--|--|--|
| Name:           |  |  |  |
| Mark:           |  |  |  |

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

# **Mathematics Extension 2**

#### **General Instructions**

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen.
- Board-approved calculators may be used.
- Reference sheet is provided separately.
- Marks may be lost for poor working out and/or poor logic.

Total marks - 100

**Section I** Pages 2-5

#### 10 marks

- Attempt Questions 1 10
- Circle the BEST solution.

Section II Pages 6 – 12

#### 90 marks

- Attempt Questions 11 31
- Your responses should include relevant mathematical reasoning and/or calculations.

# **Section I**

# 10 marks Attempt Questions 1 – 10

Circle the BEST solution below for Questions 1 - 10.

Which of the following is the modulus–argument (polar) form of z = -3 + 3i?

(A) 
$$z = 3\sqrt{2}\operatorname{cis}\left(\frac{3\pi}{4}\right)$$

(B) 
$$z = 3\operatorname{cis}\left(\frac{\pi}{3}\right)$$

(C) 
$$z = 2\sqrt{3}\operatorname{cis}\left(-\frac{\pi}{4}\right)$$

(D) 
$$z = 6 \operatorname{cis}\left(\frac{\pi}{2}\right)$$

- What is the centre and radius of the sphere:  $x^2 6x + y^2 + 4y + z^2 8z 92 = 0$ ?
  - (A) Centre = (3, -2, 4); Radius = 11 units

(B) Centre = 
$$(6, -4, 8)$$
; Radius =  $\sqrt{92}$  units

(C) Centre = 
$$(-3, 2, -4)$$
; Radius = 121 units

(D) Centre = 
$$(-6, 4, -8)$$
; Radius = 92 units

3 What is the equivalent to  $\int \frac{1}{x \ln x} dx$ ?

$$(A) \qquad \frac{1}{\left(\ln\left|x\right|\right)^2} + c$$

(C) 
$$xe^x + c$$

(B) 
$$x \ln |x| + c$$

(D) 
$$\ln \left| \ln \left| x \right| \right| + c$$

- 4 Which of the following equals to the magnitude of the vector  $\begin{pmatrix} \cos 2\theta \\ -\tan 2\theta \\ -\sin 2\theta \end{pmatrix}$ ?
  - (A)  $\sec 2\theta$
  - (B)  $\csc 2\theta$
  - (C)  $\cot 2\theta$
  - (D)  $\sin 2\theta \cos 2\theta$
- 5 Consider the statement:

"If I had watched what I ate and slept more, then I would have been healthier and lived longer".

Which of the following represents the <u>converse</u> of the statement?

- (A) "If I had watched what I ate and slept more, then I would <u>not</u> have been healthier and would <u>not</u> have lived longer"
- (B) "If I had watched what I ate <u>or</u> slept more, then I would have been healthier <u>or</u> lived longer"
- (C) "If were healthier and lived longer, then I would have watched what I ate and slept more"
- (D) "If were healthier or lived longer, then I would have watched what I ate or slept more"

- **6** By considering the Euler (exponential) form, what is the exact value of  $i^i$ ?
  - (A)  $e^{\pi}$
  - (B)  $e^{\frac{\pi}{2}}$
  - (C)  $e^{-\pi}$
  - (D)  $e^{-\frac{\pi}{2}}$
- 7 The velocity v (in metres per second) of a particle after t seconds is given by: v = 4x 4, where x is the displacement (in metres) after t seconds. Initially, the particle is 2m to the right of the origin.

Which of the following is an equation that represents the particle's displacement over time?

- $(A) x = 2t^2 4t$
- (B)  $x = \log_e(t-2)$
- $(C) \qquad x = \frac{4}{t 1}$
- (D)  $x = e^{4t} + 1$
- 8 Given that |z| = 1, where is the largest possible value for arg(z + 2)?
  - (A)  $\frac{2\pi}{3}$
  - $(B) \qquad \frac{3\pi}{4}$
  - (C)  $\frac{\pi}{3}$
  - (D)  $\frac{\pi}{6}$

9 By considering the five fifth roots of the equation  $z^5 + 32 = 0$ , which of the following expressions are correct?

(A) 
$$z^4 - 2z^3 + 4z^2 - 8z + 16 = \left(z^2 - 4\cos\frac{\pi}{5}z + 4\right)\left(z^2 - 4\cos\frac{3\pi}{5}z + 4\right)$$
.

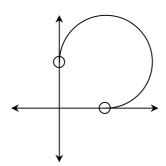
(B) 
$$z^4 + 8z^3 + 12z^2 + 8z + 16 = \left(z^2 + 2\cos\frac{2\pi}{5}z + 4\right)\left(z^2 + 2\cos\frac{4\pi}{5}z + 4\right)$$
.

(C) 
$$z^4 - z^3 + z^2 - z + 16 = \left(z^2 - \cos\frac{\pi}{10}z + 4\right)\left(z^2 - \cos\frac{3\pi}{10}z + 4\right)$$

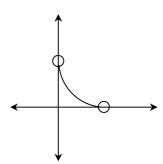
(D) 
$$z^4 + 4z^3 + 8z^2 + 12z + 16 = \left(z^2 + 8\cos\frac{2\pi}{5}z + 4\right)\left(z^2 + 8\cos\frac{4\pi}{5}z + 4\right)$$
.

10 Which of the following diagrams can represent  $\arg\left(\frac{z-3}{z-3i}\right) = \pi$ ?

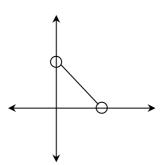
(A)



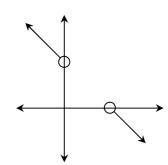
(B)



(C)



(D)



## **Section II**

#### 90 marks

## **Attempt Questions 11–31**

In Questions 11–31, your responses should include relevant mathematical reasoning and/or calculations.

#### **Question 11**

If z = -24 - 70i and w = 3 + 3i, express each of the following in the form a + ib, where  $a, b \in \mathbb{R}$ .

(a) 
$$\frac{6}{w}$$
.

(b) 
$$2w-\overline{z}$$
.

(c) 
$$\sqrt{z}$$
.

(d) 
$$w^6$$
.

## **Question 12**

Find 
$$\int \sin^3 x \cos^4 x \, dx$$
.

## **Question 13**

If p > 0, q > 0 and r > 0,

(a) Show that: 
$$p^2 + (qr)^2 \ge 2pqr$$
.

(b) Show that: 
$$p^2 + q^2 + r^2 \ge pq + pr + qr$$
.

(c) Show that: 
$$p^2(1+q^2) + q^2(1+r^2) + r^2(1+p^2) \ge 6pqr$$
.

(d) Hence, or otherwise, show that: 
$$p^2(1+p^2) + q^2(1+q^2) + r^2(1+r^2) \ge 6pqr$$
.

2

1

2

3

#### **Question 14**

A particle moves according to the formula:

$$v^2 = 18 - 16x - 2x^2$$

where v is the velocity (in metres per second) and x (in metres) is the displacement of the particle after t seconds.

- (a) Show that the particle moves with simple harmonic motion.
- (b) Find the period and amplitude of the particle's movement.

# **Question 15**

Consider the following vector equations of two lines:

$$\underline{r}_1 = \begin{pmatrix} -1 \\ 2 \\ -8 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} \text{ and } \underline{r}_2 = \begin{pmatrix} 1 \\ 5 \\ -9 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}.$$

- (a) Find the angle between the two lines, rounding your solution to the nearest degree.
- (b) Find the point of intersection between the two lines.
- (c) Find a vector that is perpendicular to both  $\underline{r}_1$  and  $\underline{r}_2$

# **Question 16**

Prove by contradiction that  $\sqrt[3]{m}$  is irrational, where m is a prime number.

#### **Question 17**

On an Argand diagram, shade the region where:

$$\left| \frac{z+3}{z-7} \right| < 1$$
 and  $\operatorname{Im}(2z^2) \le 8$ .

## **Question 18**

Find 
$$\int \frac{18-6x^2}{x(x^2+9)} dx$$
.

# **Question 19**

Consider the statement:  $\forall a, b \in \mathbb{R}^+$ , If  $b^3 - a^2b \le b^2 + ab$  then  $b \le a + 1$ .

By considering the contrapositive, prove the statement.

# **Question 20**

Consider the points A(-3,5,1), B(2,7,-4) and C(1,-3,-2).

- (a) Find  $proj_{\overrightarrow{AR}} \overrightarrow{AC}$ .
- (b) Hence, or otherwise, find the area of  $\triangle ABC$ .

## **Question 21**

Use integration by parts to find  $\int \log_e \sqrt{x-5} \ dx$ .

# **Question 22**

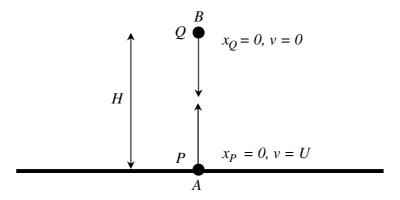
Consider the following complex expression:  $|z - 3\sqrt{3} - 3i| = 3$ .

- (a) Find the maximum value of |z|.
- (b) Find the range of values of arg(z).

#### **Question 23**

An object P with mass m kg was projected vertically upwards from point A on the ground with initial velocity U metres per second. At the same instant, a second object Q also with mass m kg was released from rest from point B vertically above point A leading to a collision with object P. The distance B between B and B is equal to the maximum height that B would have travelled were it not to collide with B. The objects experience air resistance of magnitude B0, where B1 is a constant and B2 is velocity. Particle B3 reaches 50% of its terminal velocity B4 at its point of collision with object B5.

Let  $x_P$  be the distance of P above A and  $x_Q$  be the distance of Q below B.



Assume gravity is g m/s<sup>2</sup>.

(a) Show that 
$$V = \sqrt{\frac{g}{k}}$$
.

(b) Show that 
$$x_P = \frac{1}{2k} \log_e \left( \frac{g + kU^2}{g + kv^2} \right)$$
.

(c) Hence, show that 
$$H = \frac{1}{2k} \log_e \left( 1 + \frac{U^2}{V^2} \right)$$
.

(d) Given that 
$$x_Q = \frac{1}{2k} \log_e \left( \frac{g}{g - kv^2} \right)$$
 [DO NOT PROVE THIS].

Show that at point of collision,  $x_Q = \frac{1}{2k} \log_e \frac{4}{3}$ .

(e) Show that the velocity of P at the point of collision is 
$$\frac{V}{\sqrt{3}}$$
.

## **Question 24**

Solve for 
$$\theta$$
, where  $-\pi \le \theta \le \pi$ :  $\left| e^{3i\theta} - i \right| = 1$ .

# **Question 25**

(a) Using the substitution 
$$t = \tan \frac{x}{2}$$
, or otherwise, evaluate 
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos x + \sin x} dx$$
.

(b) Hence, or otherwise, evaluate 
$$\int_{0}^{\frac{\pi}{2}} \frac{x}{1 + \cos x + \sin x} dx.$$
 3

# **Question 26**

A 5kg object was projected through the air with an initial velocity of 72 m/s at an angle of 60° to the horizontal ground. In addition to gravity of 10 m/s<sup>2</sup>, the object experiences air resistance proportional to the object's velocity v of  $\frac{v}{20}$ .

- (a) Show that the vertical equation of motion for acceleration is  $\ddot{y} = -10 \frac{\dot{y}}{100}$ .
- (b) Find the maximum height attained by the object, rounding your solution to the nearest metre.

#### **Question 27**

Find 
$$\int \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} dx.$$

## **Question 28**

(a) By considering the expansion of  $(\cos\theta + i\sin\theta)^7$ , show that:

$$\tan 7\theta = \frac{7 \tan \theta - 35 \tan^3 \theta + 21 \tan^5 \theta - \tan^7 \theta}{1 - 21 \tan^2 \theta + 35 \tan^4 \theta - 7 \tan^6 \theta}.$$

(b) Using part (a), solve the equation: 2

$$x^6 - 21x^4 + 35x^2 - 7 = 0$$

(c) Hence, or otherwise, show that:

$$\cot^2 \frac{\pi}{7} + \cot^2 \frac{2\pi}{7} + \cot^2 \frac{3\pi}{7} = 5.$$

#### **Question 29**

Let  $I_n = \int_{0}^{\frac{\pi}{4}} \sec^n x \ dx$  for integers  $n \ge 0$ .

(a) Show that 
$$I_n = \frac{\left(\sqrt{2}\right)^{n-2}}{n-1} + \frac{n-2}{n-1}I_{n-2}$$
 for integers  $n \ge 2$ .

(b) Hence, find the value of 
$$\int_{0}^{2} (4 + x^{2})^{\frac{5}{2}} dx.$$

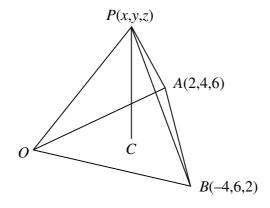
## **Question 30**

Prove by mathematical induction for  $n \in \mathbb{Z}^+$ :

$$\frac{1}{2} + \cos x + \cos 2x + \cos 3x + \dots + \cos \left(nx\right) = \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\frac{x}{2}}$$

# **Question 31**

*OABP* is triangular pyramid, where O is the origin and coordinates of the other vertices are A(2,4,6), B(-4,6,2) and P(x,y,z). The height of the pyramid is the length CP, where C is a point on the base OAB such that CP is perpendicular to the base.



- (a) Using vectors, show that  $\triangle OAB$  is an equilateral triangle.
- (b) M is the midpoint of AB. Given that  $\overrightarrow{OC} = \frac{2}{3} \overrightarrow{OM}$ , find an expression for  $\overrightarrow{CP}$  2 in terms of x, y and z.
- (c) It is given that  $OP = BP = AP = 2\sqrt{14}$ .

  By considering similar relationships for  $\overrightarrow{AC}$  and  $\overrightarrow{BC}$ , find the coordinates of P.

End of paper.