2017
TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

## Mathematics Extension 2

## General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used

Total marks - 100

Section I Pages 2-6
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II Pages 7-15
90 marks

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section


## Section I

## 10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple choice answer sheet for Questions 1 - 10

1 What does $i^{2017}$ equal to?
(A) 1
(B) -1
(C) $i$
(D) $-i$
$2 \quad$ What is the value of $\int_{0}^{\frac{2}{3}} \frac{1}{9 x^{2}+4} d x$ ?
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{24}$
(D) $\frac{\pi}{36}$

3 What are the complex solutions for $z$ in the equation $z^{2}-4 z+6=0$ ?
(A) $z=1+i$
(B) $z=2+2 i$
(C) $z=2 \pm i \sqrt{2}$
(D) $z=2 \pm i \sqrt{5}$
$4 \quad$ Find the value of the eccentricity (e) of the following equation: $\quad \frac{x^{2}}{9}-\frac{y^{2}}{16}=1$.
(A) $e=\frac{4}{3}$
(B) $e=\frac{5}{3}$
(C) $\quad e=\frac{3}{5}$
(D) $e=\frac{3}{4}$

5 Which of the following are the square roots of the complex number $5-12 i$ ?
(A) $2-3 i,-2+3 i$
(B) $2+i,-2-i$
(C) $-3+2 i, 3-2 i$
(D) $13+13 i,-13-13 i$

6 The diagram shows a circle with equation of $x^{2}+y^{2}=2$, where the shaded area is a minor segment bound by the circle and the line $x=1$.


If the shaded area is rotated about the line $x=1$, using the method of cylindrical shells, what is an expression for the volume produced?
(A) $2 \pi \int_{0}^{1}\left(\sqrt{2-y^{2}}-1\right)^{2} d y$
(B) $2 \pi \int_{0}^{1} y^{2}-1 d y$
(C) $\quad 4 \pi \int_{1}^{\sqrt{2}}(x-1) \sqrt{2-x^{2}} d x$
(D) $\quad 4 \pi \int_{1}^{\sqrt{2}} x \sqrt{2-x^{2}} d x$

7 The equation $x^{3}-x^{2}-3 x+2=0$ has roots $x=\alpha, \beta$ and $\gamma$. Find the value of $(\alpha+\beta)(\alpha+\gamma)(\beta+\gamma)$.
(A) -1
(B) 1
(C) 5
(D) 7
$8 \quad$ On an Argand diagram, the points $A$ and $B$ are represented by the complex numbers $z$ and $z_{2}$ respectively. Which of the following best describes the locus of

$$
\operatorname{Arg}\left(z-z_{1}\right)-\operatorname{Arg}\left(z-z_{2}\right)=\theta ?
$$

(A) A ray at the point represented by $\left(z_{1}-z_{2}\right)$ with angle of $\theta$.
(B) $\quad \mathrm{A}$ circle with centre at the point represented by $\left(z_{1}-z_{2}\right)$ and radius of $\left|z_{1}-z_{2}\right|$.
(C) A circle travelling anti-clockwise from $A$ to $B$, terminating at $A$ and $B$ (excluding those points).
(D) A circle travelling anti-clockwise from $B$ to $A$, terminating at $A$ and $B$ (excluding those points).

9 A vehicle of mass $m \mathrm{~kg}$ moving with velocity $v \mathrm{~m} / \mathrm{s}$ is rounding a curve of radius $r$ metres banked at an angle of $\theta$. A lateral (sideways) friction force $F$ is acting between its tyres and the road, and a normal force $N$ is acting on the tyres. Gravity is $g \mathrm{~m} / \mathrm{s}^{2}$,


At what velocity would the vehicle experience no friction force (i.e. would not slip)?
(A) $v=m g \cos \theta$
(B) $v=g \sec \theta$
(C) $v=\sqrt{\frac{r g}{\sin \theta}}$
(D) $v=\sqrt{r g \tan \theta}$

10 The following diagram shows the graph of $y=\frac{(x+1)^{3}(x-3)^{2}}{5}$ :


Which of the following graphs best represents $y=\ln \left[\frac{(x+1)^{3}(x-3)^{2}}{5}\right]$ ?
(A)

(C)

(B)

(D)


## Section II

## 90 marks

Attempt Questions 11 - 16
Allow about 2 hours and 45 minutes for this section
Answer each question on a NEW page on your OWN PAPER.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a NEW page on your OWN PAPER.
(a) Find $\int\left(5+4 x-x^{2}\right)^{-\frac{1}{2}} d x$.
(b) Let $w=3-\sqrt{3} i$.
(i) Express $w$ in modulus-argument form.
(ii) Express $w^{12}$ in modulus-argument form.
(c) Using the substitution $t=\tan \frac{x}{2}$, or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin x} d x$.
(d) (i) Find real numbers $a, b$ and $c$ such that

$$
\frac{4 x^{2}-17 x+25}{(x+2)(x-3)^{2}}=\frac{a}{x+2}+\frac{b}{x-3}+\frac{c}{(x-3)^{2}} .
$$

(ii) Hence, or otherwise, find $\int \frac{4 x^{2}-17 x+25}{(x+2)(x-3)^{2}} d x$.
(e) In the diagram below, the shaded area shows the area enclosed between the curve $y=e^{-x^{2}}$ and the $x$-axis, between $x=0$ and $x=2$.


Using the method of cylindrical shells, find the volume of the solid formed when the shaded region in the diagram is rotated about the $y$-axis.

Question 12 (15 marks) Use a NEW page on your OWN PAPER.
(a) Sketch the following on different complex planes labelling all key features:
(i) $\quad|z-2| \leq 1$.
(ii) $\quad \frac{\pi}{4} \leq \operatorname{Arg}(z+1-i) \leq \frac{\pi}{2}$.
(iii) $\operatorname{Re}(z)=|z|$.
(b) Evaluate $\int_{0}^{\frac{a}{2}} x^{2} \sqrt{a^{2}-x^{2}} d x$.
(c) The diagram shows the graph of a function $f(x)$.


Sketch the following curves on separate half-page diagrams.
(i) $\quad y=|f(x)|$
(ii) $y=[f(x)]^{2}$
(iii) $y \times f(x)=1$
(iv) $y=e^{f(x)}$

Question 13 (15 marks) Use a NEW page on your OWN PAPER.
(a) Use integration by parts to find $\int x^{2} e^{-x} d x$.
(b) If $\alpha, \beta$ and $\gamma$ are the roots of the equation $x^{3}-x^{2}-2 x+4=0$,
(i) Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(ii) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(iii) Find an equation with roots of $1-\alpha, 1-\beta$ and $1-\gamma$.
(iv) Find an equation with roots of $\frac{\alpha+\beta}{\gamma}, \frac{\beta+\gamma}{\alpha}$ and $\frac{\alpha+\gamma}{\beta}$.
(c) On the Argand diagram, the points $P$ and $Q$ are represented by the complex numbers $z$ and $w$ respectively, as shown in the diagram below.


Let the complex number $z=\cos \theta+i \sin \theta, 0<\theta<\frac{\pi}{4}$. In the diagram, $O P=O Q$ and $\angle Q O P=\alpha$, where $0<\alpha<\frac{\pi}{4}$.
(i) Express the complex number $w$ in modulus-argument form.
(ii) Show that $z \bar{w}=\cos \alpha-i \sin \alpha$.
(iii) By considering $\triangle \mathrm{OPQ}$, or otherwise, deduce that $\cos \left(\frac{\alpha}{2}\right)=-\frac{\operatorname{Im}(z \bar{w})}{|z-w|}$.

Question 14 (15 marks) Use a NEW page on your OWN PAPER.
(a) Find the equation of the tangent to the curve $x^{2}-x y+y^{3}=5$ at the point $(2,-1)$.
(b) (i) Let $I_{n}=\int_{1}^{2} x(\ln x)^{n} d x$ for integers $n \geq 0$.

Show that $I_{n}=2(\ln 2)^{n}-\frac{n}{2} I_{n-1}, n \geq 1$.
(ii) Hence, or otherwise, evaluate: $\int_{1}^{2} x(\ln x)^{3} d x$.
(c) (i) Using De Moivre's theorem, show that:

$$
\tan 3 \theta=\frac{\tan ^{3} \theta-3 \tan \theta}{3 \tan ^{2} \theta-1}
$$

(ii) Hence or otherwise, find all the roots of $x^{3}-3 x^{2}-3 x+1=0$.
(iii) Show that $\tan \frac{\pi}{12}+\tan \frac{5 \pi}{12}=4$.

Question 15 (15 marks) Use a NEW page on your OWN PAPER.
(a) An object, $P$, of mass $m \mathrm{~kg}$ is released from a point $A$ and falls vertically towards a point on the ground $B$. At the point of release another object, $Q$, with identical mass is projected vertically upwards from $B$ with initial velocity that is twice the terminal velocity of object $P$.

Both objects are subject to air resistance of $m k v$, where $v \mathrm{~m} / \mathrm{s}$ is the velocity of the objects and $k$ is a constant. Assume gravity is $g \mathrm{~m} / \mathrm{s}^{2}$.
(i) Show that the terminal velocity of object $P$ is $\frac{g}{k}$.
(ii) For object $Q$, show that the time of flight, $t$ in seconds, is given by the equation:

$$
t=\frac{1}{k} \log _{\mathrm{e}}\left(\frac{3 g}{g+k v}\right) .
$$

(iii) The objects $P$ and $Q$ collide in mid-air when object $P$ reaches $30 \%$ of its terminal velocity. Find the velocity of $Q$ when the collide in terms of $g$ and $k$.
(b) A solid $A B C D P Q R$ is formed such that $A B C D$ is a square with sides of $a$ metres and 4 $P Q R$ is an Isosceles triangle with $P Q=P R$. The base, $Q R$, and perpendicular height, $P M$, of triangle $P Q R$ are both $a$ metres in length.

The cross-sections perpendicular to the base $Q R C D$ are trapeziums. A typical crosssection is shown shaded in the diagram.


If the solid is $h$ metres deep, find the volume of the solid in terms of $a$ and $h$.
(c) The point $P\left(c p, \frac{c}{p}\right)$ lies on the rectangular hyperbola $x y=c^{2}$, as shown in the diagram below. The tangent at $P$ cuts the $x$-axis at $Q$. The point $M$ is the midpoint of $P Q$.

(i) Show that the equation of the tangent at $P$ is $x+p^{2} y=2 c p$.
(ii) Find the coordinates of $Q$.
(iii) Find the coordinates of $M$, and show that its locus is a hyperbola.

Question 16 (15 marks) Use a NEW page on your OWN PAPER.
(a) (i) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.
(ii) Hence, or otherwise, evaluate: $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.
(b) $\quad P(a \cos \theta, b \sin \theta)$ is a point that lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, as shown in the diagram below.


The focus of the ellipse is the point $S(a e, 0)$, where $e$ is the eccentricity of the ellipse.
(i) Find the gradient of the tangent at $P$.
(ii) Show that the product of the gradient of the interval $S P$ and the gradient of the tangent at $P$ is:

$$
\frac{\cos \theta\left(1-e^{2}\right)}{e-\cos \theta}
$$

(iii) Prove that the interval $S P$ is never perpendicular to the tangent at $P$, provided that $\theta \neq 0$ or $\pi$.
(c) In the diagram, $P Q R S$ is a cyclic quadrilateral and the points $A, B$ and $C$ are perpendiculars drawn $S$ to $Q P$ produced, $P R$ and $Q R$ respectively.


Copy this diagram.
(i) Prove that $\angle S B A=\angle S P A$. 2
(ii) Prove that $\angle S B C+\angle S R C=180^{\circ}$.
(iii) Hence, or otherwise, prove that points $A, B$ and $C$ are collinear.

