

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

# **Mathematics Extension 2**

#### **General Instructions**

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used

#### Total marks - 100

**Section I** Pages 2-6

#### 10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II Pages 7 – 14

#### 90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section

# **Section I**

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1 - 10

- 1 Which of the following is equivalent to  $i^{19997}$ ?
  - (A) 1
  - (B) i
  - (C) -i
  - (D) -1
- 2 Find the value of the eccentricity (e) of the following equation:  $0.2x^2 + 0.25y^2 = 1$ 
  - (A) e = 0.3
  - (B)  $e = \frac{1}{\sqrt{5}}$
  - (C)  $e = \frac{4}{5}$
  - (D)  $e = \frac{3}{2}$

3 If  $z = 1 + i\sqrt{3}$ , which of the following is equivalent to  $z^{24}$ ?

- (A)  $2^{12}$
- (B)  $2^{24}$
- (C)  $2^{12}\sqrt{3}$
- (D)  $2^{24}\sqrt{3}$

4 The roots of the equation  $x^3 + 2x - 8 = 0$  are  $\alpha$ ,  $\beta$  and  $\gamma$ .

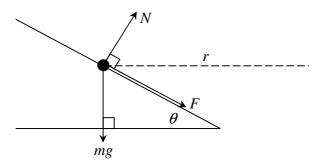
Which of the following equations has roots of  $(1 - \alpha)$ ,  $(1 - \beta)$  and  $(1 - \gamma)$ ?

- (A)  $x^3 3x^2 + 5x + 5 = 0$
- (B)  $2x^3 + x^2 4x + 2 = 0$
- (C)  $5x^3 + 2x^2 + 3x 1 = 0$
- (D)  $x^3 2x 1 = 0$

5 The derivative  $\frac{dy}{dx}$  of the curve  $y^3 = x^2 + xy$  is:

- (A)  $\frac{dy}{dx} = \frac{2x y}{3y^2 + y}$
- (B)  $\frac{dy}{dx} = \frac{2x}{3y^2 + y}$
- (C)  $\frac{dy}{dx} = \frac{3y^2 2x}{x}$
- (D)  $\frac{dy}{dx} = \frac{2x + y}{3y^2 x}$

A vehicle of mass m kilograms moving with velocity v metres per second is rounding a bend with radius r metres banked at an angle of  $\theta$ . A lateral (sideways) force F is acting between its tyres and the road, and a normal reaction force N is acting on the tyres, as shown in the diagram.



By resolving forces, which of the following is true for *F*?

(A) 
$$F = m \left( g \cos \theta - \frac{v^2}{r} \sin \theta \right)$$

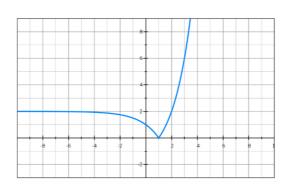
(B) 
$$F = m \left( \frac{v^2}{r} \cos \theta - g \sin \theta \right)$$

(C) 
$$F = m \left( \frac{v^2}{r} \sin \theta + g \cos \theta \right)$$

(D) 
$$F = m \left( \frac{v^2}{r} - g \sin 2\theta \right)$$

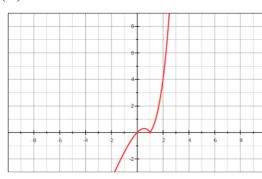
- A committee of three is to be selected at random from six women and n men, where n is a positive integer. What is the number of possible committees containing exactly one woman?
  - (A)  ${}^{n}C_{2}$
  - (B) 20
  - (C) 6*n*
  - (D) 3n(n-1)

8 The following depicts the function y = f(x):

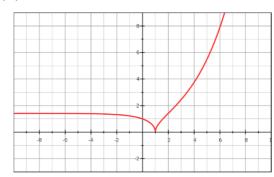


Which of the following graphs best represents y = xf(x)?

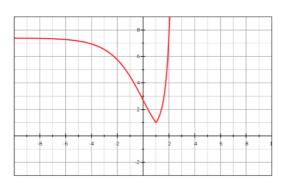
(A)



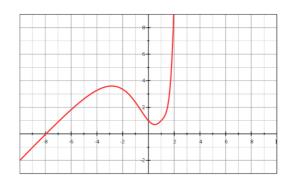
(B)



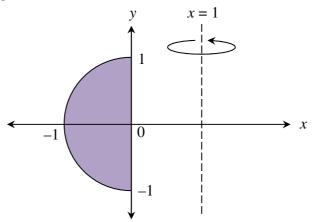
(C)



(D)



9 The region bound by the circle  $x^2 + y^2 = 1$  for  $-1 \le x \le 0$  is rotated about the line x = 1, as shown in the diagram below.



By using the method of cylindrical shells, which of the following expressions represent the volume of the solid formed?

(A) 
$$2\pi \int_{-1}^{0} (1-x)\sqrt{1-x^2} dx$$

(B) 
$$2\pi \int_{-1}^{0} (1+x)\sqrt{1-x^2} \ dx$$

(C) 
$$4\pi \int_{-1}^{0} (1-x)\sqrt{1-x^2} dx$$

(D) 
$$4\pi \int_{-1}^{0} (1+x)\sqrt{1-x^2} dx$$

- If w is a complex cube root of unity,  $w \ne 1$ , which of the following is equivalent to the expression  $\frac{1}{1+w} + \frac{1}{1+w^2}$ ?
  - (A) -1
  - (B) 0
  - (C) 1
  - (D) 2

# **Section II**

#### 90 marks

# **Attempt Questions 11 – 16**

#### Allow about 2 hours and 45 minutes for this section

Answer each question on a NEW page on your OWN PAPER.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a NEW page on your OWN PAPER.

(a) If z = -3 + 4i, express each of the following in the form a + ib, where a and b are real.

(i) 
$$3\bar{z}$$
.

(ii) 
$$z\overline{z}$$
.

(iii) 
$$z^2$$
.

(iv) 
$$\frac{1}{z}$$
.

(v) 
$$\sqrt{z}$$
.

(b) Find 
$$\int \frac{dx}{\sqrt{8x-4x^2}}$$
.

(c) (i) Find real numbers 
$$a$$
,  $b$  and  $c$  such that 
$$\frac{x^2+2}{x^2-x-2} = a + \frac{b}{x-2} + \frac{c}{x+1}.$$

(ii) Hence, or otherwise, find 
$$\int \frac{x^2 + 2}{x^2 - x - 2} dx$$
.

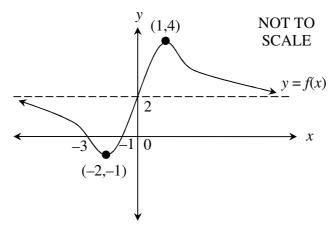
(d) Evaluate 
$$\int_{1}^{e^2} x^2 \log_e x \, dx.$$
 3

**End of Question 11.** 

Question 12 (15 marks) Use a NEW page on your OWN PAPER.

(a) Evaluate 
$$\int_{0}^{\frac{\pi}{3}} \sec^{4}\theta \tan\theta \ d\theta.$$
 3

(b) The diagram shows the graph of a function y = f(x), where there are stationary points at (1,4) and (-2,-1), x-intercepts at x = -1 and x = -3, and an oblique asymptote at y = 2.



Sketch the following curves on separate half-page diagrams.

(i) 
$$y = \frac{1}{f(x)}$$

(ii) 
$$y^2 = f(x)$$
 2

(iii) 
$$y = \cos^{-1} \left[ f(x) \right]$$
 2

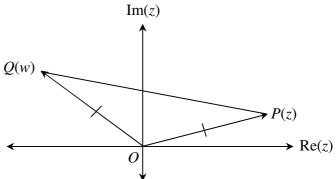
(c) If 
$$ax^4 + bx^3 + dx + e = 0$$
 has a non-zero triple root, show that:  $4a^2d + b^3 = 0$ .

(d) If 
$$z = \cos\theta + i\sin\theta$$
, show that  $\frac{1}{1+z} = \frac{1}{2} \left( 1 - i \tan\frac{\theta}{2} \right)$ .

# End of Question 12.

Question 13 (15 marks) Use a NEW page on your OWN PAPER.

- (a) If a, b and c are positive,
  - (i) Prove that  $a^2 + b^2 \ge 2ab$ .
  - (ii) Hence, or otherwise, prove that  $a^3 + b^3 \ge ab(a + b)$ .
  - (iii) Hence, or otherwise, prove that  $(a + b)(b + c)(c + a) \ge 8abc$ .
- (b) Using the substitution  $t = \tan \frac{x}{2}$ , or otherwise, evaluate  $\int_{0}^{\frac{\pi}{2}} \frac{1}{4\sin x 2\cos x + 6} dx$ .
- (c) The complex numbers z and w are represented by the vectors  $\overrightarrow{OP}$  and  $\overrightarrow{OQ}$  respectively, as shown in the diagram below.



Given that  $\triangle POQ$  is isosceles and  $\angle POQ = \frac{2\pi}{3}$ ,

- (i) Find an expression for w in terms of z.
- (ii) Hence, show that  $(z + w)^2 = zw$ .
- (d)  $\alpha$ ,  $\beta$  and  $\gamma$  are the roots of the equation  $x^3 2x^2 5x 1 = 0$ . Find an equation with roots of  $\frac{1}{\sqrt{\alpha}}$ ,  $\frac{1}{\sqrt{\beta}}$  and  $\frac{1}{\sqrt{\gamma}}$ .

# End of Question 13.

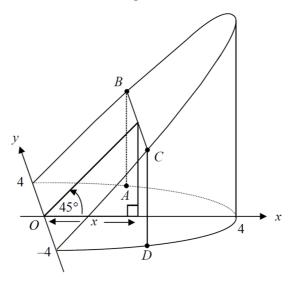
Question 14 (15 marks) Use a NEW page on your OWN PAPER.

(a) (i) Let 
$$I_n = \int_0^1 \frac{x^n}{\sqrt{x+1}} dx$$
 for integers  $n \ge 0$ .

Show that  $(2n + 1)I_n = 2\sqrt{2} - 2nI_{n-1}$  for integers  $n \ge 1$ .

(ii) Hence, find the value of 
$$\int_{0}^{1} \frac{x^{3}}{\sqrt{x+1}} dx.$$

- (b) (i) On an Argand diagram, sketch the locus of the point *P* representing the complex number *z* such that  $\left|z \left(\sqrt{3} + i\right)\right| = 1$ .
  - (ii) Find the set of possible values of |z| and Arg (z).
- (c) A wedge was created by cutting a right cylinder of radius 4 units at 45° through a diameter of its base, as shown in the diagram below.



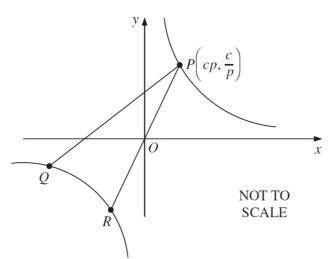
The wedge comprises of rectangular cross-sections taken perpendicular to the base of the wedge at a distance of x from the y-axis.

- (i) Show that the area of *ABCD* is given by  $2x\sqrt{16-x^2}$ .
- (ii) Hence, find the exact volume of the wedge. 3

# End of Question 14.

Question 15 (15 marks) Use a NEW page on your OWN PAPER.

(a)



The point  $P\left(cp, \frac{c}{p}\right)$ , where  $p \neq \pm 1$ , is a point on the hyperbola  $xy = c^2$ , and the normal to the hyperbola at P intersects the second branch at Q. The line through P and the origin Q intersects the second branch at R.

Given that the equation of the normal at P is  $py - c = p^3(x - cp)$ ,

(i) Show that the x-coordinate of P and Q satisfy the equation

$$x^{2} - c\left(p - \frac{1}{p^{3}}\right)x - \frac{c^{2}}{p^{2}} = 0$$
.

(ii) Find the coordinates of Q, and show that  $\angle QRP$  is a right angle. 3

(b) Let 
$$w = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$
,

(i) Show that  $w^k$  is a solution of  $z^7 - 1 = 0$ , where k is an integer.

(ii) Show that  $w + w^2 + w^3 + w^4 + w^5 + w^6 = -1$ .

(iii) Hence, or otherwise, show that  $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}$ .

Question 15 continues on the next page.

- (c) An object of mass m kg is dropped from rest from the top of a cliff 30 metres high. The resistance to its motion has magnitude  $\frac{1}{20}mv^2$  when the velocity of the object is v m/s. The object has fallen x metres after t seconds.
  - (i) Show that the object's terminal velocity V is  $\sqrt{20g}$ .
  - (ii) Find the expression for v in terms of x.
  - (iii) Find the percentage of its terminal velocity that the object will attain just prior to hitting the ground.

End of Question 15.

Question 16 (15 marks) Use a NEW page on your OWN PAPER.

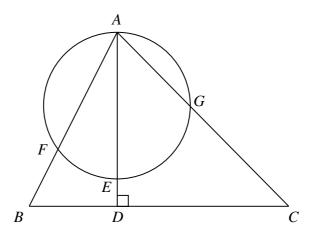
(a) Using the principles of mathematical induction, prove that for n > 1 and x > -1:

$$(1+x)^n > 1 + nx$$

(ii) Hence, deduce that 
$$\left(1 - \frac{1}{2n}\right)^n > \frac{1}{2}$$
 for  $n > 1$ .

(b) Find 
$$\int \frac{dx}{\sqrt{x+1}+x+1}$$
.

(c) In triangle ABC, AD is a perpendicular drawn to BC. Points E, F and G lie on the circumference of a circle and also lie on the lines AB, AD and AC respectively. AE is the diameter of the circle. This is shown in the diagram below.

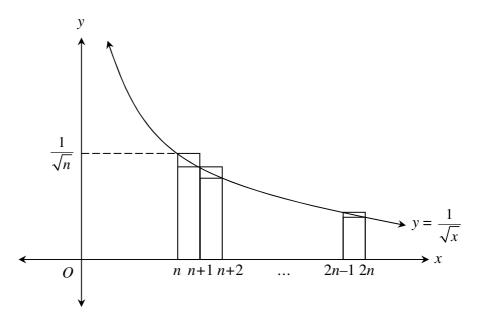


Prove that the *BFGC* is a cyclic quadrilateral.

Question 16 continues on the next page.

(d) (i) Show that 
$$\int_{n}^{2n} \frac{1}{\sqrt{x}} dx = 2\sqrt{n} \left( \sqrt{2} - 1 \right).$$

(ii) In the diagram below, the graph of  $y = \frac{1}{\sqrt{x}}$  is drawn and n upper and lower rectangles have been constructed between x = n and x = 2n, each with width 1 unit.



Let 
$$S_n = \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \frac{1}{\sqrt{n+3}} + \dots + \frac{1}{\sqrt{2n}}$$
.

( $\alpha$ ) By considering the sums of the areas of upper and lower rectangles, show that:

$$2\sqrt{n}\left(\sqrt{2}-1\right)+\frac{1-\sqrt{2}}{\sqrt{2n}} < S_n < 2\sqrt{n}\left(\sqrt{2}-1\right).$$

 $(\beta)$  Hence, find the value of, correct to four decimal places,

$$\frac{1}{\sqrt{10^8+1}} + \frac{1}{\sqrt{10^8+2}} + \frac{1}{\sqrt{10^8+3}} + \dots + \frac{1}{\sqrt{2\times10^8}}.$$

End of paper.