2018

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used

Total marks - 100

Section I Pages 2-5
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II Pages 6-13
90 marks

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple choice answer sheet for Questions 1 - 10
$1 \quad$ What is the value of $|-2|-|-5|$?
(A) 7
(B) -3
(C) -7
(D) 3
$2 \quad$ What is the value of $x: \quad 8^{x}=32$
(A) $x=3$
(B) $x=\frac{2}{5}$
(C) $x=\frac{4}{3}$
(D) $x=\frac{5}{3}$

3 Which of the following is equal to the value of r ?
(A) $r=6 \times \frac{180}{25 \pi}$
(B) $r=6 \times 25 \pi$
(C) $r=6 \times \frac{25}{180} \pi$
(D) $\quad r=\frac{180 \pi}{6 \times 25}$

4 The equation $x^{2}+4 x-1=0$ has roots $x=\alpha$ and $x=\beta$. What is the value of $\alpha^{2}+\beta^{2}$?
(A) 5
(B) 14
(C) 18
(D) $\quad-7$

5 Which of the following is a solution for x in the equation: $\sqrt{2} \cos x+1=0$
(A) $x=\frac{\pi}{4}$
(B) $x=\frac{\pi}{6}$
(C) $\quad x=\frac{5 \pi}{4}$
(D) $\quad x=\frac{2 \pi}{3}$

6 The following diagram shows the graph $y=f(x)$. Using the graph, evaluate: $\int_{-3}^{10} f(x) d x$.
(A) 9
(B) 3
(C) -2
(D) $\quad-5$

7 A geometric series with a first term of 8 has a limiting sum of 12 . What is the value of its common ratio?
(A) $\frac{1}{6}$
(B) $\frac{1}{4}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$
$8 \quad$ What is the domain of the function $f(x)=\frac{1}{\sqrt{x-6}}$?
(A) All real x
(B) $0<x<6$
(C) $x \geq 6$
(D) $\quad x>6$

9 What is the amplitude and period of the equation $y=\frac{1}{3} \sin 4 x$?
(A) Amplitude is $\frac{1}{3}$ and period is $\frac{\pi}{2}$
(B) Amplitude is $\frac{1}{3}$ and period is 2π
(C) Amplitude is 4 and period is $\frac{\pi}{3}$
(D) Amplitude is 4 and period is $\frac{3 \pi}{2}$

10 Consider the point P where $x=a$ on the curve $y=f(x)$.
If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$, which of the following statements best describe the point P on the curve $y=f(x)$?
(A) $\quad P$ is a maximum stationary point.
(B) $\quad P$ is a minimum stationary point.
(C) $\quad P$ is an inflexion point.
(D) $\quad P$ is a horizontal inflexion point.

End of Section I.

Section II

90 marks

Attempt Questions 11 - 16
Allow about 2 hours and 45 minutes for this section
Answer each question on a NEW page on your OWN PAPER.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a NEW page on your OWN PAPER.
(a) Simplify fully: $2 \sqrt{27}-\sqrt{12}+5 \sqrt{3}$.
(b) Evaluate $\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}$.
(c) Solve for $x: \quad \frac{x-2}{x+5} \geq 0$.
(d) Differentiate the following with respect to x :
(i) $y=(4 x-5)^{2}$.
(ii) $y=\frac{x^{2}}{\cos x}$.
(iii) $y=\log _{e}\left(3-x^{3}\right)$.
(e) Find the limiting sum of the series: $6-2+\frac{2}{3}-\frac{2}{9}+\ldots$
(f) If $\cos \theta=\frac{2}{7}$ and $\sin \theta<0$, find the exact value of $\tan \theta$.

Question 12 (15 marks) Use a NEW page on your OWN PAPER.
(a) Find:
(i) $\int \cos (2018 x) d x$.
(ii) $\int \frac{5 x}{x^{2}+1} d x$.
(iii) $\int \frac{5}{x}+e^{-3 x} d x$.

2
(b) Prove the identity: $\frac{\cos x}{1-\sin x}-\sec x=\tan x$.
(c) Find the equation of the tangent to the curve $y=(3 x-1)^{2}$ at the point where $x=1$.
(d) By using Simpson's Rule with five function values, estimate the value of $\int_{1}^{5} \log _{e} x d x$.

2 Round your solution to two decimal place.
(e) The chance of rain on a given day over the year in the rural town of Cowhop is 20%.

2 What is the probability of at least one day of rain over three consecutive days?
(f) \quad Simplify: $\quad \frac{2^{3 x-1}}{8^{x-1}} \times \frac{25^{y}}{5^{2 y+1}}$.

End of Question 12.

Question 13 (15 marks) Use a NEW page on your OWN PAPER.
(a) Solve for $x: \quad \log _{2}\left(\log _{2} x\right)=3$.
(b) Triangle $A B C$ lies on a Cartesian plane and has vertices $A(0,4), B(3,0)$ and $C(-2,0)$, as shown in the diagram below.

AO and CD are the altitudes drawn from vertices A and C respectively.
(i) Find the gradient of the interval $A B$.
(ii) Show that the interval $A B$ has equation $4 x+3 y-12=0$.
(iii) Find the perpendicular distance between the $A B$ and the point $C(-2,0)$.
(iv) Find the equation of the altitude $C D$.
(v) Hence, or otherwise, find the coordinates of the point P, the point of intersection of the altitudes $A O$ and $C D$.
(c)

In the diagram, $A B \| F D, A D F$ is a right-angled triangle, C is the midpoint of $A D$ and E is the midpoint of $F D$.
(i) Explain why $\angle C E D=\angle A B C$.
(ii) Prove that $\triangle C D E \equiv \triangle C A B$.
(iii) Show that $A F=2 B C$.
(iv) Show that $\angle A C B=\angle D A F$.

End of Question 13.

Question 14 (15 marks) Use a NEW page on your OWN PAPER.
(a) The equation $x^{2}-6 x-3=0$ has roots $x=\alpha$ and β. Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$.
(b) Solve for x : $\quad x^{-4}-3 x^{-2}-4=0$.
(c) A particle moves along a straight line where its displacement x metres after time t seconds is given by the formula:

$$
x=1+3 \sin 2 t .
$$

(i) In terms of t, find an expression for the particle's velocity v and acceleration a.
(ii) When does the particle first come to rest?
(iii) What is the maximum displacement of the particle?
(iv) What is the maximum velocity of the particle?
(v) Sketch the graph of the particle's displacement against time for $0 \leq t \leq 2 \pi$.
(d)

The diagram above shows the curves $y=\sin 2 x$ and $y=\sin x$ for $0 \leq x \leq \pi$, intersecting at $x=0, x=\frac{\pi}{3}$ and $x=\pi$. Find the exact area of the shaded region bounded by the two curves.

End of Question 14.

Question 15 (15 marks) Use a NEW page on your OWN PAPER.
(a) (i) Differentiate with respect to $x: \quad x^{2} \log _{e} x . \quad 1$
(ii) Hence, or otherwise, find: $\int x \log _{e} x d x$. 2
(b) Consider the function $y=1-3 x+x^{3}$ for the domain $-3 \leq x \leq 2$.
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Sketch the function for $-3 \leq x \leq 2$, showing all stationary points.
(iii) What is the global minimum of the function for the domain $-3 \leq x \leq 2$?
(c) Huwi borrowed $\$ 20,000$ from a bank at an interest rate of 10% per annum, where interest is charged quarterly. He makes repayments of $\$ P$ to the bank at the end of each quarter, where the amount owing on the loan after n payments is B_{n}.
(i) Show that $B_{2}=20000 \times 1.025^{2}-P \times 1.025-P$.
(ii) Show that $B_{n}=20000 \times 1.025^{n}-40 P \times\left(1.025^{n}-1\right)$.
(iii) If the loan was fully repaid after 7 years, what would the value of P be? Express your answer to the nearest dollar.
(iv) If Huwi were to pay $\$ 900$ per quarter in repayments, how long would it take (to the nearest quarter) for him to fully repay the loan?

End of Question 15.

Question 16 (15 marks) Use a NEW page on your OWN PAPER.
(a) Differentiate with respect to x : $y=5^{x}+5 x$
(b) State the coordinates of the focus for the parabola: $y=x^{2}+4 x+2$.
(c) The mass M of an 8 -gram radioactive substance decays over time t (in days) according to the formula:

$$
M=8 e^{-k t}
$$

where k is a positive constant.
(i) Show that M satisfies the differential equation $\frac{d M}{d t}=-k M$.
(ii) If the radioactive substance loses 2.4 grams after 12 days,
(α) Find the value of k rounding to two significant figures.
(β) Using (α), find the 'half-life' of the radioactive substance. i.e. the time it takes for the substance to lose half its mass (nearest day).

Question 16 continues on the next page.

(d)

A cylinder of radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$ is inscribed in a cone with base radius 6 cm and height 20 cm , as shown in the diagram.
(i) Show that the volume, V, of the cylinder is given by $V=\frac{10}{3} \pi r^{2}(6-r)$.
(ii) Hence, or otherwise, find the values of r and h such that the cylinder has a 3 maximum volume.

End of paper.

