

Student details

Name:
Mark:

2022

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- Reference sheet is provided separately.
- Marks may be lost for poor working out and/or poor logic.

Total marks - 70

Section I
Pages $2-5$

10 marks

- Attempt Questions 1 - 10
- Circle the BEST solution.

Section II Pages 6-11
60 marks

- Attempt Questions 11-28
- Your responses should include relevant mathematical reasoning and/or calculations.

Section I

10 marks

Attempt Questions 1 - 10
Circle the BEST solution below for Questions 1 - 10 .

1 Which of the following is equivalent to $x^{2}-5 x+6$?
(A) $\quad(x+2)(x-3)$
(B) $(x-2)(x-3)$
(C) $(x-1)(x-6)$
(D) $\quad(x-1)(x+6)$

2 Which of the following represents the Cartesian equation of $(2 \cos \theta-1,2 \sin \theta+3)$?
(A) $x^{2}+y^{2}=4$
(B) $x^{2}+y^{2}=1$
(C) $(x+1)^{2}+(y-3)^{2}=4$
(D) $\quad(x-1)^{2}+(y+3)^{2}=4$

3 Which of the following are the solutions for $x \in[0,2 \pi]: \quad \sqrt{2} \sin x=-1$
(A) $\quad x=\frac{\pi}{4}$
(B) $\quad x=\frac{\pi}{4}, \frac{5 \pi}{4}$
(C) $x=\frac{5 \pi}{4}, \frac{7 \pi}{4}$
(D) $x=\frac{\pi}{4}, \frac{3 \pi}{4}$

4 If eight students were seated around a round table, how many unique arrangements are possible if three particular students were to be seated adjacent to each other?
(A) $8!3!$
(B) $7!3$!
(C) $6!3$!
(D) $5!3$!

5 Which of the following can be a solution to the differential equation $\frac{d y}{d x}=\frac{x}{y}$?
(A) $y=\sin x$
(B) $y=e^{x}$
(C) $y=\ln (x)$
(D) $y=\sqrt{x^{2}-4}$
$6 \quad$ Which of the following equals to the coefficient of x^{7} in the expansion of $\left(2 x^{2}-\frac{1}{3 x}\right)^{8}$?
(A) $-\frac{448}{243}$
(B) $\frac{1120}{81}$
(C) $-\frac{1792}{27}$
(D) $\frac{1}{6561}$
$7 \quad$ Fred recently started a new job that required him to catch the 7:25am bus every morning. He noted that the bus usually comes no time however there has been days where it was late by a few minutes. Over a period of 80 days, Fred noted that the bus was late on twelve occasions.

Over this 80-day period, what is the standard deviation of times that the bus was late?
(A) 8.944
(B) 10.2
(C) 3.194
(D) 12

8 Which of the following graphs best represents $y=\cos \left(\cos ^{-1} x\right)$?
(A)
(B)

(C)

(D)

9 When a polynomial $P(x)$ is divided by $(x-1)$, the remainder is 8 . When $P(x)$ is divided by $(x+4)$, the remainder is -7 .

What is the reminder when $P(x)$ is divided by $(x-1)(x+4)$?
(A) Remainder is $3 x+5$
(B) Remainder is $-3 x-5$
(C) Remainder is $2 x-1$
(D) Remainder is $-2 x+1$

10 Which of the following could be the differential equation represented by the slope field below?

(A) $\quad \frac{d y}{d x}=\frac{1}{|1+x+y|}$
(B) $\frac{d y}{d x}=\tan ^{-1} x$
(C) $\frac{d y}{d x}=|1+x|$
(D) $\frac{d y}{d x}=\frac{1}{1+x^{2}}$

Section II

60 marks
 Attempt Questions 11-28

In Questions 11-28, your responses should include relevant mathematical reasoning and/or calculations.

Question 11

Solve for x, expressing you solution in set notation: $\frac{2 x-1}{4-5 x} \leq 2$.

Question 12

Find $\int \frac{1}{\sqrt{25-4 x^{2}}} d x$.

Question 13

The coordinates A, B and C are represented by the position vectors $\underset{\sim}{a}=\binom{2}{3}, \underset{\sim}{b}=\binom{1}{-4}$
and $\underset{\sim}{c}=\binom{-1}{6}$. Find the size of the acute angle between the vectors $\overrightarrow{A B}$ and $\overrightarrow{B C}$, rounding your solution to the nearest degree.

Question 14

By using the substitution $t=\tan \left(\frac{x}{2}\right)$, prove the following identity:

$$
\frac{1+\sin x-\cos x}{1+\sin x+\cos x}=\tan \left(\frac{x}{2}\right)
$$

Question 15

Find the exact value of $\sin \left(2 \tan ^{-1} \frac{2}{5}\right)$.

Question 16

A multiple-choice exam had 12 questions, each with choices of A, B, C, D and E.
If a student randomly guessed all his solutions, what is the probability that they get 75% for exam? Round your solution to the nearest three significant figures.

Question 17

The diagram shows the graph of a function $f(x)$.

Sketch the following curves on separate diagrams:
(a) $y=f(|x|)$
(b) $y=\frac{1}{f(x)}$
(c) $y^{2}=f(x)$

Question 18

The polynomial $P(x)=x^{3}-2 x^{2}-4 x-7$ has roots α, β and γ.
(a) Find the value of $\alpha+\beta+\gamma$.
(b) Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(c) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.

Question 19

Solve for $x: \quad \sin x+\sqrt{3} \cos x=1$ for $x \in[0,2 \pi]$.

Question 20

Consider the functions $f(x)=x(x+1)$ and $g(x)=x^{2}-8 x+12$.
(a) Find the value of $f(f(1))$.
(b) Draw a neat sketch of the graph $y=g(f(x))$, labelling all key features.

Question 21

Prove by mathematical induction for $n \in \mathbb{Z}^{+}$:

$$
1^{2} \cdot 2+2^{2} \cdot 3+3^{2} \cdot 4+\ldots+n^{2}(n+1)=\frac{1}{12} n(n+1)(n+2)(3 n+1)
$$

Question 22

How many unique four-letter arrangements are possible using the letters in the word

Question 23

Varignon's theorem states that the figure formed by joining the midpoints of all sides of any quadrilateral is a parallelogram.

Consider a quadrilateral $A B C D$, where the points M, N, P and Q are the midpoints of the sides $A B, B C, C D$ and $D A$ respectively, as shown in the diagram below.

Using vectors, prove Varignon's theorem for the quadrilateral $A B C D$ (i.e. prove that $M N P Q$ is a parallelogram).

Question 24

A 5 kilogram object on an inclined plane was connected to a free hanging object of mass m kilograms via a light inextensible string in a pulley system, as shown in the diagram below:

The system accelerated such that the 5 kilogram mass moved upwards at a rate of $6 \mathrm{~m} / \mathrm{s}^{2}$. Assuming gravity of $9.8 \mathrm{~m} / \mathrm{s}^{2}$,
(a) Find the amount of tension in the string.
(b) Find the value of m, rounding your solution to one decimal place.

Question 25

An object (A) was projected from the point O on the ground with initial velocity of $u \mathrm{~m} / \mathrm{s}$ at an angle of α to the horizontal. After T seconds, a second object (B) was projected from point O with the same initial velocity as A at an angle of β to the horizontal. The objects collide in the air at point P, as shown in the diagram below.

Assuming gravity is $g \mathrm{~m} / \mathrm{s}^{2}$, the equation of the path of that object A travels is given by the following:

$$
y=-\frac{g x^{2}}{2 u^{2}} \sec ^{2} \alpha+x \tan \alpha \quad(\text { DO NOT PROVE THIS })
$$

(a) Write down the equation of the path that object B travels to.
(b) Show that the horizontal distance travelled by both objects when they collide at point P is:

$$
x=\frac{2 u^{2} \cos \alpha \cos \beta}{g \sin (\alpha+\beta)}
$$

The horizontal displacement of object A after t seconds is given by: $\quad x_{A}=V t \cos \alpha$ (DO NOT PROVE THIS).
(c) Write down the equation for the horizontal displacement of object $B x_{B}$ after t seconds.
(d) Show that, for the collision to take place, the value of T is given by:

$$
T=\frac{2 u(\cos \beta-\cos \alpha)}{g \sin (\alpha+\beta)}
$$

Question 26

Solve for θ for $0 \leq \theta \leq 2 \pi: \quad \sin \theta-\sin 3 \theta+\sin 5 \theta=0$.

Question 27

In a laboratory, an experiment was conducted on a new strain of the H-Lix virus. The researchers started their experiment with 2500 virus cells, where the number of virus cells (P) fluctuated over time (t hours) according to the differential equation:

$$
\frac{d P}{d t}=\frac{1}{2000} P(10000-P) \cos t
$$

(a) Show that: $\frac{1}{P(10000-P)}=\frac{1}{10000}\left[\frac{1}{P}+\frac{1}{10000-P}\right]$.
(b) Show that the solution to the differential equation is:

$$
P=\frac{10000}{1+3 e^{-5 \sin t}}, \text { where } t \geq 0
$$

(c) Find the range at which the population of virus cells fluctuate between, rounding your solution to the nearest whole number.

Question 28

The equation $a x^{2}+b x+c=0$ has roots $x=\tan \alpha$ and $x=\tan \beta$ where $0<\alpha<\beta$.

Find an expression for $\tan (\beta-\alpha)$ in terms of a, b and c, expressing your solution in simplest form.

End of paper.

