

Student details

Name:
Mark:

2022

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- Reference sheet is provided separately.
- Marks may be lost for poor working out and/or poor logic.

Total marks - 100

Section I
Pages $2-5$

10 marks

- Attempt Questions 1 - 10
- Circle the BEST solution.

Section II Pages 6-13
90 marks

- Attempt Questions 11-33
- Your responses should include relevant mathematical reasoning and/or calculations.

Section I

10 marks
Attempt Questions 1 - 10

Circle the BEST solution below for Questions 1 - 10 .

1 For the statement "if roses are red then violets are blue", which of the following represents the statement's contrapositive?
(A) "If violets are not blue then roses are red."
(B) "If roses are red then violets are not blue."
(C) "If violets are not blue then roses are not red."
(D) "If roses are not red then violets are not blue."
$2 \quad$ Which of the following is the unit vector of $2 \underset{\sim}{i}-\underset{\sim}{j}-2 \underset{\sim}{k}$?
(A) $3(2 \underset{\sim}{i}-\underset{\sim}{j}-2 \underset{\sim}{k})$
(B) $\frac{1}{\sqrt{3}}(\underset{\sim}{i}+2 \underset{\sim}{j}+\underset{\sim}{k})$
(C) $\sqrt{3}(\underset{\sim}{i}+2 \underset{\sim}{j}+\underset{\sim}{k})$
(D) $\quad \frac{1}{3}(2 \underset{\sim}{i}-\underset{\sim}{j}-2 \underset{\sim}{k})$

3 If $w=\sqrt{3}+i$, which of the following is equivalent to w^{8} in exponential form?
(A) $e^{-\frac{\pi}{4} i}$
(B) $8 e^{\frac{5 \pi}{6} i}$
(C) $128 e^{\frac{3 \pi}{4} i}$
(D) $256 e^{-\frac{2 \pi}{3} i}$

4 Which of the following is the equation of the vector passing through the point $(4,-1)$ and perpendicular to the vector $\binom{2}{3}$, where λ is a constant?
(A) $\quad\binom{-1}{4}+\lambda\binom{2}{3}$
(B) $\quad\binom{4}{-1}+\lambda\binom{-3}{2}$
(C) $\binom{4}{-1}+\lambda\binom{-2}{3}$
(D) $\quad\binom{-4}{1}+\lambda\binom{2}{3}$

5 If $p, q \in \mathbb{R}^{+}$and $p>q$, which one of the following statements might be false?
(A) $\frac{1}{p-q}>0$
(B) $\frac{p}{q}-\frac{q}{p}>0$
(C) $p+q>2 q$
(D) $2 p>3 q$

6 What is the equivalent to $\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x$?
(A) $-4 a \sqrt{x^{2}-a^{2}}+c$
(B) $\cos ^{-1}\left(\frac{x}{a}\right)+c$
(C) $\sin ^{-1}\left(\frac{x}{a}\right)+c$
(D) $\quad \ln \left|\frac{x+\sqrt{x^{2}-a^{2}}}{a}\right|+c$

7 Consider the region $|z-2| \leq 1$ on the Argand diagram. What is the maximum value of $|z|$?
(A) 1
(B) $\sqrt{3}$
(C) 2
(D) 3

8 A particle moves with simple harmonic motion along a straight line, where its velocity v m / s is given by the formula: $v^{2}=6+4 x-2 x^{2}$, where x is the particle's displacement from a fixed point O (in metres).

What is the particle's amplitude of motion?
(A) 6 m
(B) 2 m
(C) $\sqrt{3} \mathrm{~m}$
(D) 12 m
$9 \quad w$ is a complex cube root of unity and $w \neq 1$.
What is the value of $(1-w)\left(1-w^{2}\right)\left(1-w^{4}\right)\left(1-w^{8}\right)$?
(A) $1-w$
(B) $1+w^{2}$
(C) 8
(D) 9

10 An object of $m \mathrm{~kg}$ is projected into the air with initial velocity of $u \mathrm{~m} / \mathrm{s}$ at an angle of θ against the horizontal. The object experiences gravity of $g \mathrm{~m} / \mathrm{s}^{2}$ and air resistance proportional to its velocity (i.e. $R=m k v$, where k is a constant).

Which of the following represents the equation of the object's vertical displacement after t seconds?
(A) $y=\frac{u \cos \theta}{k}\left(1-e^{-k t}\right)$.
(B) $y=\frac{1}{k} \log _{e}|k u \cos t+1|$.
(C) $y=\frac{g+k u \sin \theta}{k^{2}}\left(1-e^{-k t}\right)-\frac{g t}{k}$.
(D) $\quad y=\frac{1}{k} \log _{e}\left|\cos (\sqrt{g k} t)+\frac{k u \sin \theta}{\sqrt{g k}} \sin (\sqrt{g k t})\right|$.

Section II

90 marks

Attempt Questions 11-33
In Questions 11-33, your responses should include relevant mathematical reasoning and/or calculations.

Question 11

Evaluate $|2-3 i|$.

Question 12

Consider the vectors $\underset{\sim}{a}=\left(\begin{array}{c}-4 \\ 3 \\ 1\end{array}\right)$ and $\underset{\sim}{b}=\left(\begin{array}{c}5 \\ 6 \\ -2\end{array}\right)$.
(a) Find $|\underset{\sim}{a}|$.
(b) Find the size of the acute angle between $\underset{\sim}{a}$ and $\underset{\sim}{b}$ (nearest degree).
(c) Find the vector projection of $\underset{\sim}{a}$ in the direction of $\underset{\sim}{b}$.

Question 13
If $w=3-2 i$, express each of the following in the form $a+\mathrm{i} b$, where a and b are real.
(a) w^{-1}.
(b) $4 w+\bar{w}$.

Question 14

Find $\int \frac{1}{\sqrt{1-x-x^{2}}} d x$.

Question 15

Find the value of the real numbers a and b such that $(a+b i)^{2}=9+40 i$.

Question 16

Use integration by parts to evaluate $\int_{1}^{e} x^{4} \log _{e} x d x$.

Question 17

Prove by contradiction that $\log _{5} 4$ is irrational.

Question 18

(a) If $a, b \in \mathbb{R}$, show that: $a^{2}+b^{2} \geq 2 a b$.
(b) If $a, b, c \in \mathbb{R}$, show that: $a^{2}+b^{2}+c^{2} \geq a b+a c+b c$.
(c) Hence, or otherwise, show that: $3\left(a^{4}+b^{4}+c^{4}\right) \geq\left(a^{2}+b^{2}+c^{2}\right)^{2}$.

Question 19

On an Argand diagram, shade the region where:

$$
1 \leq \operatorname{Re}(z) \leq 3 \quad \text { and } \quad-\frac{\pi}{3} \leq \operatorname{Arg}(z) \leq \frac{\pi}{6}
$$

Question 20

Prove that $\forall a \in(0, \infty), \forall b \in(0, \infty), \log _{\frac{1}{a}} \frac{1}{b}=\log _{a} b$.

Question 21

(a) Find the value of p and q in terms of a : $\frac{3 x^{2}-a x}{(x-2 a)\left(x^{2}+a^{2}\right)}=\frac{p}{x-2 a}+\frac{x+q}{x^{2}+a^{2}}$
(b) Hence, or otherwise, evaluate $\int_{0}^{a} \frac{3 x^{2}-a x}{(x-2 a)\left(x^{2}+a^{2}\right)} d x$.

Question 22

If a point of intersection exists between $\underset{\sim}{r}=\left(\begin{array}{c}2 \\ 5 \\ -7\end{array}\right)+\lambda\left(\begin{array}{c}-3 \\ -1 \\ 6\end{array}\right)$ and $\underset{\sim_{2}}{ }=\left(\begin{array}{c}3 \\ 12 \\ -5\end{array}\right)+\mu\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$,
(a) Find the value of λ and μ.
(b) Hence, or otherwise, find the point of intersection.

Question 23

A particle is moving along a straight line where its displacement x metres from O after t seconds is given by the formula:

$$
x=5+\sin ^{2} t .
$$

(a) Show that the particle moves with simple harmonic motion.
(b) Find the period of motion.
(c) Find the total distance travelled by the particle in the first π seconds.

Question 24

Consider the sphere $S:(x-1)^{2}+(y-2)^{2}+(z+1)^{2}=9$ with centre $C(1,2,-1)$.
(a) Show that the point $A(3,3,1)$ lies on the sphere S.
(b) If A is represented by the position vector $\underset{\sim}{a}$ show that the vector $\underset{\sim}{r}=\underset{\sim}{a}+\lambda \underset{\sim}{d}$,
where λ is a constant, is a tangent to the sphere S if $\underset{\sim}{d}=\left(\begin{array}{c}4 \\ 0 \\ -4\end{array}\right)$.

Question 25

(a) Show that: $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$.
(b) Show that: $\frac{\sin \left(\frac{3 x}{2}\right)-\sin \left(\frac{x}{2}\right)}{2 \sin \left(\frac{x}{2}\right)}=\cos x$.
(c) Hence, or otherwise, prove by mathematical induction for $n \in \mathbb{Z}^{+}$:

$$
\cos x+\cos 2 x+\cos 3 x+\ldots+\cos n x=\frac{\sin \left(\frac{2 n+1}{2} x\right)}{2 \sin \left(\frac{x}{2}\right)}-\frac{1}{2}
$$

Question 26

Let $z=e^{i \theta}$.
(a) Show that $z^{n}-\frac{1}{z^{n}}=2 i \sin (n \theta)$.
(b) Show that $\left(z-\frac{1}{z}\right)^{5}=\left(z^{5}-\frac{1}{z^{5}}\right)-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right)$.
(c) Hence, find $\int \sin ^{5} \theta d \theta$.

Question 27

(a) Using De Moivre's theorem, show that: $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
(b) Hence, or otherwise, find all the roots of $8 x^{3}-6 x-1=0$ leaving your solutions in the form $x=\cos \theta$.
(c) Hence, show that $\cos \frac{\pi}{9}=\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}$.

Question 28

An object of mass $m \mathrm{~kg}$ is projected vertically upwards from the ground through gravity of $g \mathrm{~m} / \mathrm{s}^{2}$. It experiences air resistance of $\frac{1}{100} m g v^{2}$, where $v \mathrm{~m} / \mathrm{s}$ is the velocity of the object.

The object's initial velocity is $u \mathrm{~m} / \mathrm{s}$ and its displacement after t seconds is x metres.
(a) Show that the upward motion of the object is $a=-\frac{g}{100}\left(100+v^{2}\right)$.
(b) Show that the object's greatest height above the ground is $\frac{50}{g} \log _{e}\left(\frac{100+u^{2}}{100}\right) \mathrm{m}$.

Once the object reaches its maximum height, it falls back towards the ground. Let x now be the downward displacement from where the object reaches maximum height.
(c) Show that the downward motion of the object is $a=\frac{g}{100}\left(100-v^{2}\right)$.
(d) Find the terminal velocity V of the object for the downward motion.
(e) Show that the velocity when the object reaches the ground is $\frac{10 u}{\sqrt{100+u^{2}}} \mathrm{~m} / \mathrm{s}$.
(f) If the object's initial was $\mathrm{V} \mathrm{m} / \mathrm{s}$, show that its velocity when it returns to the ground Is $\frac{1}{\sqrt{2}} V \mathrm{~m} / \mathrm{s}$.

Question 29

Let $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$ for integers $n \geq 2$.
(a) Show that $I_{n}=\frac{n-1}{n} I_{n-2}$ for integers $n \geq 2$.
(b) Hence, find the value of $\int_{0}^{2}\left(4-y^{2}\right)^{\frac{5}{2}} d y$.

Question 30

In the diagram below, the point P represents a complex number $w=r \operatorname{cis} \theta$, while the point Q is the point on the ray $\arg (z)=\alpha$ such that $\angle P Q O=\frac{\pi}{2}$. The point P^{\prime}, which represents the complex number v, is a reflection of P about the ray $\arg (z)=\alpha$.

You may assume that $\triangle O P Q \equiv \triangle O P^{\prime} Q$.
(a) Write down the values of $|v|$ and $\arg (v)$.
(b) Hence, show that $v=\bar{w} \operatorname{cis} 2 \alpha$
(c) The circle $|z-(2+2 i)|=1$ is reflected in the ray $\arg (z)=\frac{\pi}{6}$. By using the result (b), or otherwise, show that the equation of this new circle is

$$
|z-[(1+\sqrt{3})+i(\sqrt{3}-1)]|=1
$$

Question 31

Using the substitution $u=\frac{1}{x}$, or otherwise, evaluate $\int_{1}^{\infty} \frac{1}{x \sqrt{x^{2}+2 x-1}} d x$.

Question 32

In the diagram below, $k-1$ rectangles are constructed from $x=2$ to $x=k+1$, where $k \geq 2, \quad 4$ between the graphs of $y=\ln x$ and $y=\ln (x-1)$.

Show that: $\quad k^{k}<k!e^{k-1}<\frac{1}{4}(k+1)^{k+1} \quad$ where $k \geq 2$.

Question 33

Consider two numbers a_{1} and a_{2}, where $a_{1}, a_{2} \in \mathbb{R}^{+}$.
(a) Prove that: $\frac{a_{1}+a_{2}}{2} \geq \sqrt{a_{1} a_{2}}$.

Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}^{+}$.

If $a_{1} a_{2} \ldots a_{n}=1$ then $a_{1}+a_{2}+\ldots+a_{n} \geq n$. (Do NOT prove this.)
(b) Prove that: $\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}}$.
(c) Hence, or otherwise, prove that for integers $n \in[1, \infty): \quad 2^{n}-1>n \sqrt{2^{n-1}}$

End of paper.

