

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used

Total marks – 100

Section I) Pages 2-6

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II) Pages 7 - 15

90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1 - 10

1 What are the complex solutions for z in the equation $z^2 + iz + 2 = 0$?

- (A) z = -2i, i
- (B) z = 2i, -i
- (C) $z = \frac{i \pm 3}{2}$

(D)
$$z = \frac{-i \pm 3}{2}$$

2 Find the value of the eccentricity (e) of the following equation: $\frac{x^2}{16} - \frac{y}{16}$

$$\frac{x^2}{16} - \frac{y^2}{9} = 1.$$

(A)
$$e = \frac{4}{3}$$

(B) $e = \frac{5}{3}$

(C)
$$e = \frac{3}{5}$$

(D) None of the above

3 Which expression is equal to
$$\int \frac{e^x}{e^{2x} + 1} dx$$
?

(A) $\tan^{-1}(e^x) + c$

(B)
$$\tan^{-1}(e^{2x}+1)+c$$

- (C) $\log_e \left(e^x + 1\right) + c$
- (D) $\log_e(e^{2x}+1) + c$
- 4 The equation $x^3 + 5x^2 + 4x 1 = 0$ has roots $x = \alpha$, β and γ . Find the value of $\alpha^3 + \beta^3 + \gamma^3$.
 - (A) –107
 - (B) –92
 - (C) –62
 - (D) –32
- 5

In how many ways can 24 identical marbles be placed in 5 different jars?

(A) $\frac{24!}{5!}$ (B) $\frac{29!}{5!}$ (C) $\frac{28!}{24!4!}$ (D) $\frac{29!}{24!5!}$

- 6 The area enclosed by the circle $(x a)^2 + y^2 = b^2$, where a > b > 0, is rotated about the y-axis. What is the volume of the *torus* formed?
 - (A) $ab\pi^2$ units³
 - (B) $2ab^2\pi^2$ units³
 - (C) $3a^2b^2\pi^2$ units³

(D)
$$4a^2b^3\pi^2$$
 units³

- 7 For the curve $x^2 + xy + y^2 = 9$, which of the following is a point where the tangent to the curve is a vertical line?
 - (A) $\left(\sqrt{3}, -2\sqrt{3}\right)$
 - (B) $\left(-2\sqrt{3},\sqrt{3}\right)$
 - (C) (0,3)
 - (D) (-3, 0)
- 8 A car was travelling along a circular bend with radius of 500m banked at an angle of 30°. Assuming gravity of 9.8ms⁻², at what velocity should the car travel such that the lateral force is eliminated?
 - (A) 49.5 ms^{-1}
 - (B) 53.2 ms^{-1}
 - (C) 2450 ms^{-1}
 - (D) 2829.0 ms^{-1}

9 The following diagram shows the graph of $y = 2x^3 e^{-x}$:

Which of the following graphs best represents $y = \sqrt{2x^3 e^{-x}}$?

10 ω is a complex cube root of unit. Which of the following equates to

$$(1-3\omega+\omega^2)(1+\omega-8\omega^2)?$$

- (A) 1
- (B) 9
- (C) 24
- (D) 36

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question on a NEW page on your OWN PAPER.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a NEW page on your OWN PAPER.

(a) Use integration by parts to find	$\int x \ln x dx . \tag{2}$	2
--------------------------------------	-------------------------------	---

(b) Let z = 2 - 2i.

(i)	Express z in modulus-argument form.	2
(ii)	Express z^{20} in modulus-argument form.	2

(c) (i) Find real numbers a, b and c such that 2

$$\frac{2x^3 + 2x^2 - 18}{x^2(x+3)(x-3)} = \frac{a}{x^2} + \frac{b}{x+3} + \frac{c}{x-3}$$

(ii) Hence, or otherwise, find
$$\int \frac{2x^3 + 2x^2 - 18}{x^2(x+3)(x-3)} dx$$
. 2

(d) Sketch the following on different complex planes labelling all key features:

(i)
$$\operatorname{Im}(z) = |z|$$
. 2

(ii)
$$\operatorname{Arg}(z-2) - \operatorname{Arg}(z) = \frac{\pi}{3}$$
. 3

Question 12 (15 marks) Use a NEW page on your OWN PAPER.

(a) Find
$$\int \frac{x}{x^4 + 1} dx$$
.

- (b) Let w = -3 4i.
 - (i) Find $w + \overline{w}$. 1
 - (ii) Express \sqrt{w} in the form a + ib, where a and b are real numbers. 2
 - (iii) Using (ii), or otherwise, solve for z in the form x + iy: 2

$$z^2 - 3z + (3 + i) = 0$$

(c) If α , β and γ are the roots of the equation $x^3 + 9x^2 - 4x - 8 = 0$, (i) Find an equation with roots of α^2 , β^2 and γ^2 . (ii) Find the value of $\frac{\alpha}{\beta} + \frac{\alpha}{\gamma} + \frac{\beta}{\alpha} + \frac{\beta}{\gamma} + \frac{\gamma}{\alpha} + \frac{\gamma}{\beta}$. 3

(d) Let z be a complex number such that |z| = a and $\operatorname{Arg} z = \theta$, where $0 < \theta < \frac{\pi}{2}$. 3 Prove that $\operatorname{Arg}(a^2 - z^2) = \theta - \frac{\pi}{2}$. Question 13 (15 marks) Use a NEW page on your OWN PAPER.

(a) Using the substitution
$$t = \tan \frac{x}{2}$$
, or otherwise, evaluate $\int \frac{1}{1 + \sin x - \cos x} dx$. 3

(b) The diagram shows the graph of a function f(x).

Sketch the following curves on separate half-page diagrams.

(i) $y = \left[f(x)\right]^2$	2
-------------------------------	---

(ii) y = f(|x|) 2

(iii)
$$y^2 = f(x)$$
 2

(iv)
$$y = \ln[f(x)]$$
 2

(c) In the diagram below, the shaded area is comprised of two regions, one bound by the graph $y = \frac{6}{x-1}$ and the x-axis between x = 2 and x = 4, and the other bound by the y = 2 and the x-axis between x = 4 and x = 7.

Using the method of cylindrical shells, find the volume of the solid formed when the shaded region in the diagram is rotated about the line x = -2.

Question 14 (15 marks) Use a NEW page on your OWN PAPER.

- (a) A particle of mass *m* is falling through a medium with resistance mkv^2 , starting from rest. Assuming gravity of *g* m/s²,
 - (i) Show that the particle's terminal velocity V is $\sqrt{\frac{g}{k}}$. 1

(ii) If the particle's velocity after t seconds is $v \text{ ms}^{-1}$, show that:

$$v = V\left(\frac{e^{\frac{2gt}{V}} - 1}{e^{\frac{2gt}{V}} + 1}\right).$$

(b) The solid *ABCD* is cut from a quarter cylinder of radius *r* as shown. Its base is an isosceles triangle *ABC* with AB = AC. The length of *BC* is *a* and the midpoint of *BC* is *X*.

The cross-sections perpendicular to AX are rectangles. A typical cross-section is shown shaded in the diagram.

Find the volume of the solid *ABCD*.

(c) In the diagram, from an external point T two tangents are drawn to a circle meeting the circle at Q and R. A line PQ is drawn, where P lies on the circumference of the circle. Another line ST is drawn parallel to PQ, where S lies on the circumference of the circle. ST meets the lines PR and QR at U and V respectively.

Copy this diagram.

(i)	Prove that ΔTVR is similar to ΔTRU .	2
(ii)	Show that $TU.TV = TQ^2$.	2
(iii)	Prove that ΔVQT is similar to ΔQUT .	2
(iv)	Show that ΔPUQ is isosceles.	1

Question 15 (15 marks) Use a NEW page on your OWN PAPER.

(a) (i) Show that
$$3x^2 + 18x - 5y^2 + 10y + 7 = 0$$
 is the equation of a hyperbola. 1

(b) a, b and c are the three sides of a triangle.

(i) Show that
$$ab + ac + bc \le a^2 + b^2 + c^2$$
. 1

(ii) Show that
$$3(ab + ac + bc) \le (a + b + c)^2 \le 4(ab + ac + bc)$$
. 3

(c) (i) Let
$$U_n = \int_{0}^{\frac{\pi}{4}} \tan^n x \, dx$$
 for integers $n \ge 2$.
Show that $U_n + U_{n-2} = \frac{1}{n-1}$.

(ii) Hence, or otherwise, evaluate:
$$\int_{0}^{\frac{\pi}{4}} \tan^{5} x \, dx.$$
 2

(d) Consider the equation
$$z^5 - i = 0$$
.

(i) Show that z = i is a solution to the equation, and hence show that 1

$$1 - iz - z^2 + iz^3 + z^4 = 0$$
, for $z \neq i$.

(ii) Hence or otherwise, find all the roots of $z^5 - i = 0$. [You may leave your solution in the $cis\theta$ form.]

(iii) Show that
$$(z-i)\left(z^2-2i\sin\frac{\pi}{10}z-1\right)\left(z^2+2i\sin\frac{3\pi}{10}z-1\right)=0.$$
 2

Question 16 (15 marks) Use a NEW page on your OWN PAPER.

- (a) Solve for x in general form: $\sin 2x + \sin 3x + \sin 4x = 0$.
- (b) An object P of mass m kg is connected to a fixed point A by a light, inextensible string with length l vertically above the vertex of a cone.

The object makes an angle θ , with the vertical AV where $0^{\circ} < \theta < 45^{\circ}$ and moves in a circular motion on the horizontal plane. The object moves with constant angular velocity ω radians per second around O, the centre of the circle.

The tension in the string is T Newtons and the normal reaction force from the cone onto the particle is N Newtons.

(i) Draw a diagram showing the forces on *P*.

Show that:

$$T = \frac{m}{\cos 2\theta} \left(g \cos \theta - \omega^2 l \sin^2 \theta \right)$$

$$N = \frac{m \sin \theta}{\cos 2\theta} \left(\omega^2 l \cos \theta - g \right).$$

(ii) Hence, or otherwise, show that the condition for the object P to remain in 2 contact with the surface of the cone is $\omega > \sqrt{\frac{g}{l\cos\theta}}$.

3

2

(c) A sequence of numbers u_n is defined as follows:

$$\begin{cases} u_1 = u_2 = 1\\ u_{n+1} = u_n + u_{n-1}, \text{ for } n \ge 2. \end{cases}$$

By using mathematical induction, show that for $n \ge 1$: $u_n = \frac{1}{\sqrt{5}} (\alpha^n - \beta^n)$,

where
$$\alpha = \frac{1+\sqrt{5}}{2}$$
 and $\beta = \frac{1-\sqrt{5}}{2}$ are the roots of $x^2 - x - 1 = 0$.

(d) $P(\sec\theta, \tan\theta)$ is a point that lies on the hyperbola $x^2 - y^2 = 1$, as shown in the diagram below.

The tangent to the hyperbola at *P* meets the asymptotes $y = \pm x$ at *A* and *B*.

(i)	Show that the equation of the tangent at P is $x \sec \theta - y \tan \theta = 1$.	1
(ii)	Show that $AP = PB$.	2
(iii)	Show that the area of $\triangle OAB$ is independent of the position of P.	2

End of paper.