2016

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used

Total marks - 100

Section I Pages 2-6
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II Pages 7-15
90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple choice answer sheet for Questions 1 - 10
$1 \quad$ What are the complex solutions for z in the equation $z^{2}+i z+2=0$?
(A) $z=-2 i, i$
(B) $z=2 i,-i$
(C) $z=\frac{i \pm 3}{2}$
(D) $z=\frac{-i \pm 3}{2}$
$2 \quad$ Find the value of the eccentricity (e) of the following equation: $\quad \frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.
(A) $e=\frac{4}{3}$
(B) $e=\frac{5}{3}$
(C) $e=\frac{3}{5}$
(D) None of the above

3 Which expression is equal to $\int \frac{e^{x}}{e^{2 x}+1} d x$?
(A) $\tan ^{-1}\left(e^{x}\right)+c$
(B) $\tan ^{-1}\left(e^{2 x}+1\right)+c$
(C) $\quad \log _{e}\left(e^{x}+1\right)+c$
(D) $\quad \log _{e}\left(e^{2 x}+1\right)+c$

4 The equation $x^{3}+5 x^{2}+4 x-1=0$ has roots $x=\alpha, \beta$ and γ.
Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(A) -107
(B) $\quad-92$
(C) $\quad-62$
(D) $\quad-32$

5 In how many ways can 24 identical marbles be placed in 5 different jars?
(A) $\frac{24!}{5!}$
(B) $\frac{29!}{5!}$
(C) $\frac{28!}{24!4!}$
(D) $\frac{29!}{24!5!}$

6 The area enclosed by the circle $(x-a)^{2}+y^{2}=b^{2}$, where $a>b>0$, is rotated about the y-axis. What is the volume of the torus formed?
(A) $a b \pi^{2}$ units 3
(B) $\quad 2 a b^{2} \pi^{2}$ units 3
(C) $3 a^{2} b^{2} \pi^{2}$ units 3
(D) $4 a^{2} b^{3} \pi^{2}$ units 3

7 For the curve $x^{2}+x y+y^{2}=9$, which of the following is a point where the tangent to the curve is a vertical line?
(A) $(\sqrt{3},-2 \sqrt{3})$
(B) $\quad(-2 \sqrt{3}, \sqrt{3})$
(C) $\quad(0,3)$
(D) $(-3,0)$

8 A car was travelling along a circular bend with radius of 500 m banked at an angle of 30°. Assuming gravity of $9.8 \mathrm{~ms}^{-2}$, at what velocity should the car travel such that the lateral force is eliminated?
(A) $49.5 \mathrm{~ms}^{-1}$
(B) $53.2 \mathrm{~ms}^{-1}$
(C) $2450 \mathrm{~ms}^{-1}$
(D) $\quad 2829.0 \mathrm{~ms}^{-1}$

9 The following diagram shows the graph of $y=2 x^{3} e^{-x}$:

Which of the following graphs best represents $y=\sqrt{2 x^{3} e^{-x}}$?
(A)

(B)

(C)

(D)

10ω is a complex cube root of unit. Which of the following equates to

$$
\left(1-3 \omega+\omega^{2}\right)\left(1+\omega-8 \omega^{2}\right) ?
$$

(A) 1
(B) 9
(C) 24
(D) 36

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Answer each question on a NEW page on your OWN PAPER.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a NEW page on your OWN PAPER.
(a) Use integration by parts to find $\int x \ln x d x$.
(b) Let $z=2-2 i$.
(i) Express z in modulus-argument form.

2
(ii) Express z^{20} in modulus-argument form.
(c) (i) Find real numbers a, b and c such that

$$
\frac{2 x^{3}+2 x^{2}-18}{x^{2}(x+3)(x-3)}=\frac{a}{x^{2}}+\frac{b}{x+3}+\frac{c}{x-3} .
$$

(ii) Hence, or otherwise, find $\int \frac{2 x^{3}+2 x^{2}-18}{x^{2}(x+3)(x-3)} d x$.
(d) Sketch the following on different complex planes labelling all key features:
(i) $\operatorname{Im}(z)=|z|$.
(ii) $\quad \operatorname{Arg}(z-2)-\operatorname{Arg}(z)=\frac{\pi}{3}$.

Question 12 (15 marks) Use a NEW page on your OWN PAPER.
(a) Find $\int \frac{x}{x^{4}+1} d x$.
(b) Let $w=-3-4 i$.
(i) Find $w+\bar{w}$.
(ii) Express \sqrt{w} in the form $a+i b$, where a and b are real numbers.
(iii) Using (ii), or otherwise, solve for z in the form $x+i y$:

$$
z^{2}-3 z+(3+i)=0
$$

(c) If α, β and γ are the roots of the equation $x^{3}+9 x^{2}-4 x-8=0$,
(i) Find an equation with roots of α^{2}, β^{2} and γ^{2}.
(ii) Find the value of $\frac{\alpha}{\beta}+\frac{\alpha}{\gamma}+\frac{\beta}{\alpha}+\frac{\beta}{\gamma}+\frac{\gamma}{\alpha}+\frac{\gamma}{\beta}$.
(d) Let z be a complex number such that $|z|=a$ and $\operatorname{Arg} z=\theta$, where $0<\theta<\frac{\pi}{2}$.

Prove that $\operatorname{Arg}\left(a^{2}-z^{2}\right)=\theta-\frac{\pi}{2}$.

Question 13 (15 marks) Use a NEW page on your OWN PAPER.
(a) Using the substitution $t=\tan \frac{x}{2}$, or otherwise, evaluate $\int \frac{1}{1+\sin x-\cos x} d x$.
(b) The diagram shows the graph of a function $f(x)$.

Sketch the following curves on separate half-page diagrams.
(i) $y=[f(x)]^{2}$
(ii) $\quad y=f(|x|)$
(iii) $y^{2}=f(x)$
(iv) $y=\ln [f(x)]$
(c) In the diagram below, the shaded area is comprised of two regions, one bound by the graph $y=\frac{6}{x-1}$ and the x-axis between $x=2$ and $x=4$, and the other bound by the $y=2$ and the x-axis between $x=4$ and $x=7$.

Using the method of cylindrical shells, find the volume of the solid formed when the shaded region in the diagram is rotated about the line $x=-2$.

Question 14 (15 marks) Use a NEW page on your OWN PAPER.
(a) A particle of mass m is falling through a medium with resistance $m k v^{2}$, starting from rest. Assuming gravity of $g \mathrm{~m} / \mathrm{s}^{2}$,
(i) Show that the particle's terminal velocity V is $\sqrt{\frac{g}{k}}$.
(ii) If the particle's velocity after t seconds is $v \mathrm{~ms}^{-1}$, show that:

$$
v=V\left(\frac{e^{\frac{2 g t}{V}}-1}{e^{\frac{2 g t}{V}}+1}\right)
$$

(b) The solid $A B C D$ is cut from a quarter cylinder of radius r as shown. Its base is an isosceles triangle $A B C$ with $A B=A C$. The length of $B C$ is a and the midpoint of $B C$ is X.

The cross-sections perpendicular to $A X$ are rectangles. A typical cross-section is shown shaded in the diagram.

Find the volume of the solid $A B C D$.
(c) In the diagram, from an external point T two tangents are drawn to a circle meeting the circle at Q and R. A line $P Q$ is drawn, where P lies on the circumference of the circle. Another line ST is drawn parallel to $P Q$, where S lies on the circumference of the circle. $S T$ meets the lines $P R$ and $Q R$ at U and V respectively.

Copy this diagram.
(i) Prove that $\triangle T V R$ is similar to $\triangle T R U$.
(ii) Show that $T U \cdot T V=T Q^{2}$.
(iii) Prove that $\triangle V Q T$ is similar to $\triangle Q U T$.
(iv) Show that $\triangle P U Q$ is isosceles.

Question 15 (15 marks) Use a NEW page on your OWN PAPER.
(a) (i) Show that $3 x^{2}+18 x-5 y^{2}+10 y+7=0$ is the equation of a hyperbola.
(ii) For the hyperbola in (i), find the eccentricity and hence the coordinates of the foci and the equation of the directrices.
(b) $\quad a, b$ and c are the three sides of a triangle.
(i) Show that $a b+a c+b c \leq a^{2}+b^{2}+c^{2}$.
(ii) Show that $3(a b+a c+b c) \leq(a+b+c)^{2} \leq 4(a b+a c+b c)$.
(c) (i) Let $U_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ for integers $n \geq 2$.

Show that $U_{n}+U_{n-2}=\frac{1}{n-1}$.
(ii) Hence, or otherwise, evaluate: $\int_{0}^{\frac{\pi}{4}} \tan ^{5} x d x$.
(d) Consider the equation $z^{5}-i=0$.
(i) Show that $z=i$ is a solution to the equation, and hence show that

$$
1-i z-z^{2}+i z^{3}+z^{4}=0, \text { for } z \neq i .
$$

(ii) Hence or otherwise, find all the roots of $z^{5}-i=0$.
[You may leave your solution in the cis θ form.]
(iii) Show that $(z-i)\left(z^{2}-2 i \sin \frac{\pi}{10} z-1\right)\left(z^{2}+2 i \sin \frac{3 \pi}{10} z-1\right)=0$.

Question 16 (15 marks) Use a NEW page on your OWN PAPER.
(a) Solve for x in general form: $\sin 2 x+\sin 3 x+\sin 4 x=0$.
(b) An object P of mass $m \mathrm{~kg}$ is connected to a fixed point A by a light, inextensible string with length l vertically above the vertex of a cone.

The object makes an angle θ, with the vertical $A V$ where $0^{\circ}<\theta<45^{\circ}$ and moves in a circular motion on the horizontal plane. The object moves with constant angular velocity ω radians per second around O, the centre of the circle.

The tension in the string is T Newtons and the normal reaction force from the cone onto the particle is N Newtons.
(i) Draw a diagram showing the forces on P.

Show that:

$$
\begin{aligned}
& T=\frac{m}{\cos 2 \theta}\left(g \cos \theta-\omega^{2} l \sin ^{2} \theta\right) \\
& N=\frac{m \sin \theta}{\cos 2 \theta}\left(\omega^{2} l \cos \theta-g\right) .
\end{aligned}
$$

(ii) Hence, or otherwise, show that the condition for the object P to remain in contact with the surface of the cone is $\omega>\sqrt{\frac{g}{l \cos \theta}}$.
(c) A sequence of numbers u_{n} is defined as follows:

$$
\left\{\begin{array}{l}
u_{1}=u_{2}=1 \\
u_{n+1}=u_{n}+u_{n-1}, \text { for } n \geq 2 .
\end{array}\right.
$$

By using mathematical induction, show that for $n \geq 1$: $\quad u_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n}-\beta^{n}\right)$, where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$ are the roots of $x^{2}-x-1=0$.
(d) $P(\sec \theta, \tan \theta)$ is a point that lies on the hyperbola $x^{2}-y^{2}=1$, as shown in the diagram below.

The tangent to the hyperbola at P meets the asymptotes $y= \pm x$ at A and B.
(i) Show that the equation of the tangent at P is $x \sec \theta-y \tan \theta=1$. $\mathbf{1}$
(ii) Show that $A P=P B$.
(iii) Show that the area of $\triangle O A B$ is independent of the position of P .

End of paper.

