

2017

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used

Total marks - 70

Section I) Pages
$$2-5$$

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II) Pages 6 - 12

60 marks

- Attempt Questions 11 14
- Allow about 1 hours and 45 minutes for this section

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1 - 10

- 1 Which of the following is a simplified expression for $\frac{\sin 2x}{1 \cos 2x}$?
 - (A) $\sin x$
 - (B) $\cos x$
 - (C) tanx
 - (D) $\cot x$
- 2 In the following diagram, O is the centre of the circle. What is the value of x?

- (A) 19°
- (B) 38°
- (C) 52°
- (D) 71°

PLEASE DO NOT DISTRIBUTE

- 3 What is the point that divides the interval AB into the ratio 3 : 2, given that the coordinates of A and B are (-1,1) and (4,11) respectively?
 - (A) $\left(\frac{6}{5}, 5\right)$ (B) (7,2) (C) $\left(5, \frac{6}{5}\right)$
 - (D) (2,7)
- 4 If the letters of the word WOOLONGONG was rearranged to form a 'word', how many unique arrangements are possible if no restrictions applied?
 - (A) 10! (B) $\frac{10!}{2!2!2!}$ (C) $\frac{10!}{4!2!}$

(D)
$$\frac{10!}{4!2!2!}$$

- 5 What is the expression for the general solutions of $\tan x = 1$?
 - (A) $n\pi + \frac{\pi}{4}$ (where *n* is an integer).
 - (B) $n\pi \pm \frac{\pi}{4}$ (where *n* is an integer).
 - (C) $2n\pi + \frac{\pi}{4}$ (where *n* is an integer).
 - (D) $2n\pi \pm \frac{\pi}{4}$ (where *n* is an integer).

PLEASE DO NOT DISTRIBUTE

6 Which of the following equates to
$$\int \cot x \, dx$$
?

- (A) $\log_e x + c$
- (B) $\log_e(\sin x) + c$
- (C) $\log_e(\cos x) + c$
- (D) $\log_e(\tan x) + c$
- 7 If $\cos x \sqrt{3} \sin x \equiv R \cos(x + \alpha)$, which of the following represent the values of *R* and α ?
 - (A) $R = 2, \alpha = \frac{\pi}{6}$
 - (B) $R = 2, \alpha = \frac{\pi}{3}$
 - (C) $R = \sqrt{2}, \alpha = \frac{\pi}{6}$
 - (D) $R = \sqrt{2}, \alpha = \frac{\pi}{3}$
- 8 What is this derivative of $y = \sin^{-1}\left(\frac{1}{x}\right)$?

(A)
$$\frac{1}{x\sqrt{x^2-1}}$$

(B)
$$\frac{1}{\sqrt{x^2-1}}$$

(C)
$$\frac{-1}{x\sqrt{x^2-1}}$$

(D)
$$\frac{-1}{\sqrt{x^2-1}}$$

PLEASE DO NOT DISTRIBUTE

9 A spherical balloon was slowly inflated. At the point where its radius is 2 cm, the rate of change of its radius is 3 cm/s. What is the rate of change of its volume $\frac{dV}{dt}$ at this point? Note: Volume of a sphere is given by the formula $V = \frac{4}{3}\pi r^3$.

(A)
$$\frac{dV}{dt} = 4\pi \,\mathrm{cm}^3/\mathrm{s}$$

(B)
$$\frac{dV}{dt} = 12\pi \,\mathrm{cm}^3/\mathrm{s}$$

(C)
$$\frac{dV}{dt} = 16\pi \,\mathrm{cm}^3/\mathrm{s}$$

(D)
$$\frac{dV}{dt} = 48\pi \,\mathrm{cm}^3/\mathrm{s}$$

10 If
$$\cos \theta = -\frac{3}{5}$$
 and $0 < \theta < \pi$, then $\tan \frac{\theta}{2}$ is equal to:

- (A) $-\frac{1}{3}$ or -3(B) $\frac{1}{3}$ or 3(C) -2
- (D) 2

Section II

60 marks Attempt Questions 11 – 14 Allow about 1 hours and 45 minutes for this section

Answer each question on a NEW page on your OWN PAPER.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a NEW page on your OWN PAPER.

(a) Solve for *x*:
$$\frac{3x+1}{x-3} \ge 1.$$
 3

(b) Use the substitution
$$u = e^{\frac{x}{2}}$$
 to evaluate $\int \frac{e^{\frac{x}{2}}}{1 + e^{x}} dx$. 3

(c) Find the exact value of
$$\sin\left(2\cos^{-1}\frac{2}{3}\right)$$
. 2

(d) Evaluate
$$\lim_{x \to 0} \frac{\sin \pi x}{x}$$
. 2

(e) Find the term independent of x in the expansion of
$$\left(\frac{x}{3} - \frac{2}{x^2}\right)^{12}$$
. 3

(f) The function $f(x) = \sin x + \cos x - x$ has a root near x = 1.2. Taking x = 1.2 as a first approximation, use one application of Newton's method to find a second approximation to the root. Give your answer correct to two decimal places.

PLEASE DO NOT DISTRIBUTE

2

2

Question 12 (15 marks) Use a NEW page on your OWN PAPER.

(a) For the function: $y = 4\sin^{-1}3x - \pi$.

- (i) State the function's domain and range.
- (ii) Hence, or otherwise, sketch the graph $y = 4\sin^{-1}3x \pi$ on a number line, 2 showing all key features.
- (b) (i) Find the area bound by the curve $y = \frac{2}{x-3}$ and the x-axis, between x = 4 2 and x = 7.

(ii) Find the volume of the solid formed when the curve $y = \frac{2}{x-3}$ is rotated **2** about the *x*-axis between x = 4 and x = 7.

(c) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$.

- (i) Show that the midpoint, *M*, of the chord *PQ* is $\left(a(p+q), \frac{a(p^2+q^2)}{2}\right)$. 1
- (ii) If pq = -2, find the Cartesian equation of the locus of *M*.

PLEASE DO NOT DISTRIBUTE

- (d) A group of nine friends arrived at a restaurant.
 - (i) If they were to be seated around a circular table, how many possible arrangements are possible if:

(α)	No restrictions are applied?	1
(β)	Three particular friends wanted to be seated together as a group?	1

(ii) If they were to be seated around two circular tables, one with five seats and the other with four seats, how many possible arrangements are possible if no restrictions are applied?

PLEASE DO NOT DISTRIBUTE

Question 13 (15 marks) Use a NEW page on your OWN PAPER.

(a) Use mathematical induction to prove for all integers $n \ge 1$:

$$\frac{2 \times 1}{2 \times 3} + \frac{2^2 \times 2}{3 \times 4} + \frac{2^3 \times 2}{4 \times 5} + \dots + \frac{2^n \times n}{(n+1)(n+2)} = \frac{2^{n+1}}{n+2} - 1.$$

(b) The polynomial $P(x) = x^3 + 3x^2 - x - 4$ has roots α , β and γ .

- (i) Find the value of $\alpha + \beta + \gamma$. 1
- (ii) Find the value of $\alpha^2 + \beta^2 + \gamma^2$. 1
- (iii) Find the value of $\alpha^3 + \beta^3 + \gamma^3$. 2
- (c) Two circles, one larger than the other, intersect at M and N. PT is a common tangent that meets the larger circle at A and the smaller circle at D. BM produced meets the smaller circle at C. $AB \mid \mid DM$.

Copy the diagram into your writing booklet.

- (i) Prove that *ABCD* is a cyclic quadrilateral. 2
- (ii) Prove that $AM \mid | DC$.

3

1

PLEASE DO NOT DISTRIBUTE

(d) A particle moves along a straight line. Its displacement of x metres after t seconds is given by the formula:

$x = 6\sin 2t$.

(i)	Show that the particle moves with simple harmonic motion.	2
(ii)	Once in motion, when is the earliest the particle come to rest?	1
(iii)	Find the particle's maximum velocity.	2

2

Question 14 (15 marks) Use a NEW page on your OWN PAPER.

(a) The diagram shown is a triangular pyramid where $\angle PRQ = 40^\circ$, $\angle PSQ = 65^\circ$, 3 and $\angle RQS = 100^\circ$.

If the length of RS is 250m, find the length of PQ to one decimal place.

- (b) Show that: $\tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \pi$.
- (c) Given the identity $(1 + x)^n = {}^nC_0 + {}^nC_1x^1 + {}^nC_2x^2 + {}^nC_3x^3 + \dots + {}^nC_nx^n$ 4 using the binomial theorem, show that:

$$\frac{{}^{n}C_{0}}{1\times 2} + \frac{{}^{n}C_{1}}{2\times 3} + \frac{{}^{n}C_{2}}{3\times 4} + \dots + \frac{{}^{n}C_{n}}{(n+1)(n+2)} = \frac{2^{n+2}-n-3}{(n+1)(n+2)}$$

where *n* is a positive integer.

PLEASE DO NOT DISTRIBUTE

(d) A golfer was k metres away from the base of a tree h metres tall. To clear the tree, the golfer knew he had to chip the ball at an angle of θ with velocity V m/s such the ball cleared the tree at the maximum height of its projectile motion.

After *t* seconds, the horizontal (*x*) and vertical (*y*) displacements of the ball is given as follows (**DO NOT PROVE THESE**):

$$x = V t \cos \theta$$
 and $y = -\frac{gt^2}{2} + V t \sin \theta$

where gravity is $g \text{ m/s}^2$.

(i) Show that the ball attains a maximum height when $t = \frac{V \sin \theta}{g}$. 2

(ii) Show that
$$V^2 = \frac{g}{2h} (4h^2 + k^2)$$
. 3

(iii) Hence, or otherwise, show that $\theta = \tan^{-1}\left(\frac{2h}{k}\right)$. 1

End of paper.